
QoSE: Quality of SEcurity
a network security framework with distributed NFV

Taejune Park, Yeonkeun Kim, Jaehyun Park, Hyunmin Suh, Byeongdo Hong and Seungwon Shin
School of Computing, KAIST, Republic of Korea

Email : {taejune.park, yeonk, jaehyun.park, hyunmin088, byeongdo, claude}@kaist.ac.kr

Abstract—An effort to deploy security devices by the network
provider has been increasing as the network is being exposed to
various types of network attacks. However, network providers
are incapable of handling all types of attacks as each security
device is designed for a certain purpose. If an attack breaks out,
only one particular device becomes busy in terms of resource
usage while others being idle. Moreover, it is hard to adjust
a level of security service with respect to the importance of
network flow. To address these issues, we propose a new security
solution, QoSE, which provides adaptive security services based
on Network Function Virtualization (NFV). QoSE provides a
capability to manage resource usage that the network flow is not
concentrated on a specific node. We design QoSE considering a
distributed NFV environment to avoid a single point of failure
and a bottleneck problem. Our proposed solution has also shown
a quick recovery from fault situation. In addition, we provide a
novel resource optimization algorithm to operate security services
efficiently. We have implemented a prototype system to verify our
ideas and have checked that QoSE shows reasonable performance
compared with a common device.

I. INTRODUCTION

Network attacks are becoming various, intelligent, and
elaborative so that the network providers need to pay more
attention when deploying security devices. However, a conven-
tional security device does not follow up the rapid changing
of network attacks due to several reasons.

First, security devices are only designed to prevent certain
types of attacks. For example, a DoS detector is likely to detect
only network flooding attacks, but it may miss some cross-
site scripting attacks targeting a web site. Hence, network
providers must be aware of each specific attack and need
to prepare for protecting their network from various types of
attacks.

Another limitation is an inefficient resource usage in the
network environment. Traditional devices are designed on the
basis of an independent hardware device so that they cannot
share their resources. For example, when a network is under
DoS attack, the DoS Detector is the only device running
actively while Firewall and IDS are idle. If Firewall or IDS
can share their resources to DoS Detector, the utility of the
whole network can be increased.

Lastly, there is a lack of service flexibility in a fixed
network. Service inflexibility in a fixed network means that
the capability provided to the user is restricted to the security
services provided by the service provider in the fixed network
without giving any choices. Thus, the network user can not
choose the services based on their taste. For example, depend-

ing on the customer, one may need the highest level of security
services or the other may prefer the lowest level of security
to increase the performance.

Several types of research are studied to address these
problems. SIMPLE[1] has suggested a traffic steering method
for legacy devices using Software-Defined Networking(SDN).
It allocates paths that packets go by way of devices while
considering resource distribution. However, even if it makes a
network more flexible, it could not make resource management
also flexible because the kinds of devices are not changed, and
the summation of its resources is fixed.

Network Function Virtualization(NFV) is a satisfying solu-
tion to overcome the limitation of physical devices. NFV is a
network architecture which can make up the network services
using virtualization as a software. The key advantage of NFV
is the ability to virtualize the physical devices by simply
adding a virtual machine(VM) whenever needed. However,
NFV also carries several problems such as a single point of
failure or a bottleneck problem due to its property.

In order to solve the problems for both occurring at the
conventional network and those of NFV, we suggest QoSE
applying the NFV technique with several NFV hosts con-
nection as a distributed system in order to avoid a single
point of failure and a bottleneck problem for ensuring high
reliability. QoSE manages the resource usage in a flexible
manner by referring to the network function usage. In addition,
QoSE allows a user to selectively choose the services on
demand. Finally, it presents the automatic recovery from the
fault situation.

In this paper, we detail the design of QoSE and how it
works, how each resource should be distributed and what paths
should be selected among NFV nodes based on a resource
optimization formula and algorithm.

II. DESIGN

The followings are the key considerations of QoSE.
Differentiated services: A key contribution of QoSE is

that it can provide differentiated service level for each net-
work flow. A network situation can be easily changed and
requirements about security services are different for each
traffic and each user. To adapt and meet it, we apply NFV
technique. NFV provides network functions using VMs, so
it can provide various security functions as a software. If
networks need a new security function, networks just load a

Node 1 Node 2 Node 3

Node 4 Node 5 Node 6

Node 7 Node 8 Node 9

M
U
X

D
E
M
U
X

!₁
!₂
!₃

!₁
!₂
!₃

!₁
!₂
!₃

!₁
!₂
!₃

!₁
!₂
!₃

!₁
!₂
!₃

!₁
!₂
!₃

!₁
!₂
!₃

!₁
!₂
!₃

Fig. 1. QoSE consists of several NFV nodes. The flow follows the path based
on function of selected nodes.

new VM. Furthermore, we provide a policy which describes
what services are provided for each flow (Section II-E).

Fault recovery: If security functions come to halt suddenly,
networks might be exposed to various threats. Therefore, a
robustness of security functions cannot be emphasized enough.
They should keep the running state and be able to recover
from a fault situation as soon as possible. A single host based
NFV environment is more of critical because it contains plural
functions in a single device. To address it, QoSE offers a
distributed NFV environment with a recovery mechanism to
handle the problem correspondingly (Section II-D).

Efficient resource management: Since QoSE consists of
distributed system, resource management must be considered.
Otherwise, network flows may be able to be concentrated
on the specific node, and it can raise a bottleneck problem
or others. Therefore, the network flows must be properly
distributed to nodes. To achieve this, we devise a novel
resource optimaization and path selection algorithm (Section
II-C).

A. Structure

As mentioned before, QoSE is a distributed NFV system.
We connect several NFV nodes which have the network
functions as a grid topology, and add Multiplexer(MUX)
and Demultiplexer(DEMUX) at the edge of both sides for
modularizing. Each node has the same security functions.
Hence, every node can do the same works, so if one node
goes wrong, other nodes can stand in.

Network flows pass through nodes from MUX to DEMUX
following a decided path. For this work, we use OpenFlow
which is a de-facto standard protocol of Software-Defined Net-
working(SDN) for controlling flows. When a new flow arrives
at MUX, a notification message is sent to a QoSE controller by
the packet in message. Then, the QoSE controller calculates
which nodes to run for which functions using the resource
optimization the path selection algorithm.

Fig. 1 describes an overall example of QoSE. In this figure,
nine NFV hosts have three network functions and compose
3x3 size of QoSE module with MUX and DEMUX. In this
situation, we assume that a new flow comes to MUX and the
controller runs the algorithms. As the result, Node 1 is selected

TABLE I
SIMPLE OPENFLOW TABLE FOR A NODE WHICH HAS TWO NETWORK

FUNCTIONS.

Situation Src Dst in port Actions Byte
counts

Packet
counts

A→B, Fwd A B 1 output:2 * *

A→C,f1
A C 1 output:10 * *
A C 11 output:3 * *

A→D, f2
A D 1 output:20 * *
A D 21 output:4 * *

for the network function f1, Node 5 is selected for network
function f2, and Node 6 is selected for the network function
f3. Node 2 is also selected for relaying the flow from node 1
to node 5. After this process, the controller installs OpenFlow
rules which handle the flow at selected node and then the flow
is going to be processed.

B. Flow control on the node

QoSE dynamically distributes network flows into NFV
nodes, which provide a set of security services, based on
resource states of each node to optimize resource usages of
the nodes. For this dynamic flow control, QoSE employs
Open vSwitch(OVS) [2] on each node, which is a software
switch mostly used for host switches of VMs [3]. Thanks
to the programmability of OVS, QoSE can forward flows
dynamically to a proper node according to resource usages
of the system.

However, OVS cannot forward flows to a proper VM serving
a desired security service in a node since it does not have the
semantics of flows and VMs. To resolve this challenge, we
use a simple trick on switch ports of the software switch.
QoSE notifies the semantics of VMs to OVS by assigning
an identifier to each VM and using it as a port number of
corresponding VMs. Furthermore, QoSE separates an input
and an output interface so that QoSE guarantees whether a
flow is processed or not by the in port number and gives the
semantics of flows to the software switch.

To give a concrete example of this, Table I describes a flow
table of a node. In this node, the input/output port numbers of
the function f1 are 10/11, of the function f2 are 20/21. A flow
which goes from A to B is simply indicated as an output in
the flow table(Situation A→B, Forwarding). However, when
a flow which goes from A to C needs to visit the network
function f1, the flow output port indicates the input port of
the network function f1(Port 10). Then, the other rule is added
for this flow that the input port becomes the output port of the
network function f1(Port 11) and output port indicates the next
node. Both rules indicate the flow which goes from A to C
via the function f1(Situation A→C, f1). A flow which goes
from A to D via the function f2 is similar to the flow which
goes from A to C. Instead, its output port and input port are
for function f2(Port 20/21)(Situation A→D, f2).

Using this method, a bandwidth information of each func-
tion can be easily obtained because the OpenFlow Table
records the statistic information automatically per a rule. This

statistic information can be used for estimating the resource
usage of functions.

C. Resource optimization

Since QoSE is kind of a distributed system, the efficient
resource distribution has to be an essential factor. Traffic is
partly distributed to every node by resource usage and should
be processed well without idle resources. To achieve this work,
we have checked a correlation of resource usage and the
amount of traffic at first.

According to Cherkasova et al. [4], the CPU usage of
devices is proportional to the amount of traffic. They measured
the CPU usage per network I/O rate on Xen hypervisor and
found that CPU overhead is increased when the network
bandwidth is increased. As a consequence, it is common that
network functions use more resources when process more
traffic. Thus, if we profile the correlation of resource usage
and the amount of traffic in advance, we can predict how much
resources are needed and how many traffic can be processed by
remained resources. We can also calculate how many resources
are allocated per bandwidth.

D. Fault Recovery

Detecting and recovering from fault states is the important
issue. We classify two fault states which can be occurred: i)
node failures and ii) link failures. First, we detect node failures
by OpenFlow echo messages. A SDN controller sends an echo
message to check switch states regularly. If the controller
does not receive any reply message from the switch, the
switch is regarded as a failure. Likewise, nodes of QoSE
use OVS basically, we can apply this mechanism at QoSE.
Next, to detect link failures, we use Link Layer Discovery
Protocol(LLDP). If a connection between two nodes, the
controller receives an alert message LLDP.

If the controller detects fault states, a fault recovery process
runs. It has two steps. First, the QoSE controller removes
all flow information related to the fault node. Then, the con-
troller re-calculates available resources because total resource
amounts can be changed. After it, the controller re-runs the
path selection algorithm based on re-calculated resource usage
for the removed flows.

E. Service policy

It is important to provide differentiated service in point
of a resource efficiency and a service quality because the
requirement about security services is different. To provide
differentiated services, we introduce a service policy which
describes what flows, what service they take, and how much
traffic they use. The policy can be classified into two types;
i) general policy and ii) private policy. A general policy is a
default policy of the network that all traffic is influenced. A
network administrator sets the default function rates provided
to users. For example, the network administrator can adjust
the usage rate of functions as 6:4 or 3:7 depending on the
situation.

A private policy is commonly similar to the general policy,

TABLE II
NOTATIONS IN RESOURCE OPTIMIZATION FORMULATION

Node
N Set of NFV nodes which forms a QoSE module
n NFV node in a QoSE module where n ∈ N
Hardware Resource
R Set of hardware resources of node
r Hardware resources of node where r ∈ R
rmax Capacity of resource r
Bandwidth
bmn Transferred bandwidth from node m to n, then bmn 6= bnm

bn Sum of incoming bandwidth to node n s.t.
∑

m bmn = bn
bn,i Allocated bandwidth for security function i on node n
Bmn Link capacity between node m and n, then Bmn = Bnm

Security Function
fi Security function i deployed in each node
frate
i Predefined allocation ratio of security function i

fr
n,i(b)

Usage of resource r when security function i on node n processes
bandwidth b

but it is only for specific flows. It is free from general policy
and has a higher priority than the general policy. Therefore, it
is calculated and allocates resources before the general policy.

III. RESOURCE MANAGEMENT AND PATH SELECTION

A. The resource optimzation formulation

In this section, we describe how QoSE optimizes resource
usages of a QoSE module by solving an optimization problem
to achieve an efficient resource management. As we mentioned
in Section II-C, the resource usage of security functions
depends on the amount of traffic bandwidth. Therefore, we
design a optimization formula which calculates optimal band-
width distribution without exceeding the resource capacity of
each NFV node.

1) Definition: Prior to designing the optimization formula,
we first define some notations as denoted in Table II. As a
QoSE module consists of a set of NFV nodes N , QoSE can
distribute incoming traffic based on the resource usage of each
node n in the module.

A resource r is a type of hardware resources in each
node, for instance, r ∈ {CPU,Memory} when referenced
resources are CPU and memory of nodes. Since hardware
resource has a limit, the usage of each resource r should not
exceed its capacity rMAX .

Since resource usages depend on the amount of incoming
bandwidth to each node, we separate a bandwidth b from a set
of resources R. A bandwidth bmn refers transferred bandwidth
from node m to n, thus a total bandwidth between two nodes
m and n becomes bmn + bnm, which cannot exceed a link
capacity Bmn between them.

All nodes have same security functions, and a specific
number is assigned like fi, for example, Firewall can be
written as f1, and IDS can be f2. fRate

i is defined by policies
and it denotes how much the ratio of functions are allocated
at the QoSE module. fr

n,i(b) refers the usage of resource r
when function i of node n processes bandwidth b. If IDS is
running on node 3 processes 30Mbps traffic, CPU usage of
the IDS can be described as fCPU

3,2 (30).
The example of notations is described in Fig. 2 that refers

variables of a 2x2 module. Dotted line box in Fig. 2 refers
variables which are defined in the node n.

Node1

!₁
!₂

Node2

!₁
!₂

Node3

!₁
!₂

Node4

!₁
!₂

M
U
X

D
E
M
U
X

B₀₁

B₁₂

B₁₃
B₂₄

B₂₅

B₀₃

B₃₄

B₄₅

!₀₁

!₁₂

!₂₁

!₁₃
!₃₁

!₃₄

!₄₃

!₀₃

!₂₄
!₄₂

!₂₅

!₄₅

Node "

#₁
#₂

!$"
!", 1

!", 2

!"%

Fig. 2. Variables of 2x2 size QoSE module which has two network functions.

2) Optimal formulation: With above variables, we establish
a formulation like following.

Maximize ∑
n

∑
i

bn,i (1)

Subject to
∀n ∈ N :

∑
m

bmn =
∑
o

bno (2)

∑
m

bMUXm =
∑
o

boDEMUX (3)

∀m,n ∈ N : bmn + bnm ≤ Bmn (4)

∀r ∈ R,n ∈ N :
∑
i

fr
n,i(bn,i) ≤ rMAX

n (5)

∀i ∈ I :
∑
n

bn,i ≤
∑
n

∑
j

bn,j ∗ fRate
i (6)

b ≥ 0 (7)

The goal of this formulation is calculating maximum traffic
amounts per security function on a node without idle hard-
ware resource of the node. In other words, the formulation
maximizes a bandwidth summation of each security function
of each node, and it can be written as equation (1).

Next we have to define conditions of the formulation to find
a feasible solution. Equation (2) refers the amount of incoming
traffic of node n that should be the same with the amount of
outgoing traffic from the node n. Sometimes, an amount of
output traffic might be different with input traffic due to drop,
but we should consider that traffic is always processed without
any problem(= There is NO drop). Therefore, we assume that
there is no traffic loss in any node. Similarly, the total amount
of incoming traffic to QoSE system should be the same with
the total amount of outgoing traffic, so equation (3) is added
to the formulation.

In a point of resource limitation, traffic passing through a
link between node m and n has not to over a link capacity
Bmn, thus equation (4) should be satisfied. Likewise, security
functions of each node have not to over resource capacities,
so a solution has to satisfy equation (5). In order to apply
service policies for each security function, a sum of bn,i for

TABLE III
EXAMPLE OF A SOLUTION FOR THE OPTIMAL FORMULATION

Node Total f1 f2 CPUMAX fCPU
1 fCPU

2

1 10.00 10.00 0 100 100 0
2 10.00 10.00 0 100 100 0
3 13.53 6.47 7.06 100 65 35
4 13.53 6.47 7.06 100 65 35

Total 47.06 32.94 14.12 400 330 70

M
U
X

8

7

6

1

2

3

9

5

D
E
M
U
X

!₁ !₂ !₃

4

0
0

0

0

10

2
0

5

0
0

9
0

010
0

6

0

2 5

7

2

Node
1

10

!₂

1
0

0

5
8

3

0

0

!₁

0
0 5

0
!₃

(a)CAPACITY FOR
EACH NETWORK FUNCTION.

(b)the number of cases for the path

Fig. 3. Example of (a)a capacity for each network function and (b)the
number of cases. Among available nodes, the red solid line path ’MUX-
1-5-6-DEMUX’ has the lowest hop count in this case.

security function i that is allocated in each node should be
lower than predefined rate fRate

i of total bandwidth in QoSE,
as equation (6) shows. Finally, amounts of allocated bandwidth
must be a positive number, so equation (7) is added to the
formulation. Table III is an example result of this formulation
with following variables.

Variables of Table III: For all nodes, Bmn=100Mbps,
fCPU
n,1 (b)=10b, fCPU

n,2 (b)=10b, CPUMAX
n is 100, and a func-

tion rate of f1 and f2 is 7:3.

B. Path selection algorithm

In order to find an optimal path of each flow, QoSE calcu-
lates the shortest path using its own path selection algorithm.
Before path selection, QoSE solves the formula described in
the previous section when a flow comes to MUX. After the
bandwidth of each security functions in each node is resulted
by the formula, the path selection algorithm selects a node
sequence to traverse security functions which are written on
the policy of the targeted flow. It selects the shortest path
which contains the smallest hop.

For better understanding, an example scenario of the path
selection scenario is following. Assuming that there is 3x3
QoSE system which provides three security functions. A flow
coming to QoSE wants to use every functions f1, f2, f3 in a
bandwidth of 2Mbps as its policy. In this situation, suppose
that the result of solving the formulation is as illustrated in Fig.
3-(a). According to the result, nodes which accept f1 are {1, 2,
3}, f2 are {5, 9} (Node 4 is NOT available because we need
more than 2Mbps bandwidth in this example.) and f3 are {6, 7,
8}. After that, ordering it in descending order by the capacity,
the results of all possible paths are described in Fig. 3-(b).
Among the possible number of paths, an optimal path which
has lowest hop count is the solid line that traversing sequence
of nodes as ’1-5-6’. Although the path traversing sequence of
nodes ’2-5-6’ also contains the lowest hop count, it is lower
priority due to the having the lower capacity. Consequently, the

Algorithm 1 Path selection algorithm
1: functions[]← readFunctionList()
2: for i in range(funcLength) do
3: availNodes← getAvailableNodes(functions[i])
4: list← NodeOrdering(availNodes, functions[i])
5: Nodes[i]← list

6: fList← [[MUX], Nodes[1], Nodes[2], ..., [DEMUX]]
7: FINDPATH(fList, 0, [], ret)
8:
9: procedure FINDPATH(fList, depth, step, ret)

10: if depth == length(fList) then
11: dist← 0
12: path← []
13: for i in range(depth− 1) do
14: d, p← getHopCounts(step[i], step[i+ 1])
15: dist← dist+ d
16: path.append(p)
17: return dist, path
18: else
19: f ← fList[depth]
20: for i in range(length(f)) do
21: step.append(f [i])
22: d, p← FINDPATH(fList, depth, step, ret)
23: if d < ret.dist then
24: ret.dist← d
25: ret.path← p
26: ret.step← step

27: return ret

selected shortest path which connects from MUX to DEMUX
containing nodes as the sequence of ’1-5-6’ is selected as the
final path. Detail of path selection algorithm is illustrated in
Algorithm 1.

IV. IMPLEMENTATION

We have implemented a prototype of QoSE in Python.
A QoSE controller is built on POX [5] which is one of
the popular SDN controllers written in Python. The QoSE
controller uses a PuLP Python module [6] as an LP solver to
calculate optimal resource distribution. To build QoSE nodes,
we have used Raspberry Pi [7], a low price single board PC.
Even though a cost of Raspberry Pi is affordable to build
our distributed system, it has limited hardware performance
to run multiple commercial VMs for constructing an NFV
environment. Instead, we use Mininet [8] which supports
process-based virtualization to create a lightweight VMs.

V. EVALUATION

To evaluate QoSE, we have built a QoSE module by con-
necting four Raspberry Pis that provide two security services
(Firewall [9] and IDS [10]) in a grid topology (2x2 shape).
Then, we have investigated how effective QoSE distributes
flows according to resource states of nodes without degrading
performance by measuring throughput and how fast QoSE
recovers system faults such as a link disconnection. Further-
more, we have constructed a different size of a QoSE module
with nine Raspberry Pis (3x3 shape) to show the scalability
of QoSE.

We also have performed the same evaluation for a con-
ventional single NFV system to show the effectiveness of our

(a) Switching only

Th
ro

ug
hp

ut
(%

)

70

80

90

100

110

Bandwidth
1Mbps 1.5Mbps 2Mbps 2.5Mbps 3Mbps

(b) Firewall : Iptables

Th
ro

ug
hp

ut
(%

)

70

80

90

100

110

Bandwidth
1Mbps 1.5Mbps 2Mbps 2.5Mbps 3Mbps

(c) IDS : Snort(inline)

Th
ro

ug
hp

ut
(%

)

70

80

90

100

110

Bandwidth
1Mbps 1.5Mbps 2Mbps 2.5Mbps 3Mbps

3x3 QoSE

(d) Firewall & IDS

Th
ro

ug
hp

ut
(%

)

70

80

90

100

110

Bandwidth
1Mbps 1.5Mbps 2Mbps 2.5Mbps 3Mbps

Odroid 2x2 QoSE

�1

Fig. 4. Throughput of QoSE and Odroid-XU3 in four test cases

distributed system. We have devised a single NFV environment
on Odroid-XU3 [11] which is another single board PC with
higher performance than Raspberry Pi with the same security
services. We argue that it is reasonable to compare it with 2x2
QoSE in terms of costs since the price of a single Odroid-XU3
($179) amounts to the price of four Raspberry Pis ($35 each).

A. Profiling

Before evaluating our system, we have measured resource
usage of the two security functions first because QoSE con-
troller requires fr

i (b) to calculate optimal resource distribution.
We have run iptables and Snort with 1000 rules on Raspberry
Pi. We have sent random TCP flows to the node and monitored
resource usage of each function through a Linux top com-
mand. We also increase the amount of traffic linearly to draw
a correlation between resource usage of each function and the
volume of traffic. A linear regression model of CPU usage
of each function and determination are below (R2 means the
coefficient of determination).

fCPU
snort(b) = 0.024b+ 0.5992, R2 = 0.9263

fCPU
iptabls(b) = 0.043b+ 0.4988, R2 = 0.9617

Limitation for evaluation Through this measurement, we
found that Raspberry Pi can not cover traffic more than 3Mbps
due to a limitation of CPU performance. Thus, we have limited
the amount of traffic up to 3Mbps in our evaluation.

B. Throughput

As a first evaluation, we measure throughput of QoSE to
show how effective our system processes traffic without per-
formance degradation. We connect a QoSE module between
a sender and a receiver host, and compare the number of
sent packets with the number of received packets by sending
random TCP packets from the sender to the receiver host.
Moreover, we perform four different evaluation cases to show
detailed evaluation according to the number and variety of
security services in QoSE.

TABLE IV
FAULT RECOVERY TIME

Fault recovery time Min Avg Max Stdevp
0.99 1.50 2.01 0.52

Fig. 4 describes the measured throughput of QoSE in four
cases: (a) switching without passing any security service,
(b) passing Firewall, (c) passing IDS, and (d) passing both
Firewall and IDS. In the all cases, both scales of QoSE show
almost 100% of throughput while Odroid has less than 90%
of throughput in the worst case.

The results demonstrate that the distributed architecture of
QoSE with our resource optimization algorithm is suitable than
the centralized architecture of the conventional NFV since it
distributes system loads to avoid bottleneck of each node while
Odroid suffers from bottleneck and performance degradation.

C. Fault Recovery Time

Next, we measure the fault recovery time to evaluate how
fast QoSE detects and recovers system faults to provide stable
security services. We disconnect one link in a module during
sending packets and measure a time when the receiver host
receives packets after the link disconnection. Table IV is the
fault recover time of QoSE and shows QoSE recovers the fault
within 2 seconds. Since it depends on the configuration time of
the OpenFlow echo message, the recovery can be done faster
by decreasing the terms of the echo message.

VI. RELATED WORK

Controlling distributed security functions: Cloudwatcher
[12] proposes routing strategies how network flows optimally
traverse the security devices. Although both QoSE and Cloud-
watcher use the path selection algorithm to traverse security
functions, Cloudwatcher does not consider of which security
devices should be traversed for load balancing of the devices.
Sekar et al. [13] propose a method to control IDS and IPS
for a large scale network. For an efficient management of
IDS and IPS, they devise a formula that models constraints
such as resources, placement and network-wide objectives.
SIMPLE [1] concentrates on the load balancing of legacy
middleboxes with network policy enforcements. In contrast
with SIMPLE, CoMb [14] proposes customized API for a con-
solidated middlebox design in a commodity hardware. More
recently, SOL [15] tries to abstract the optimization process
for SDN applications developer. One may look at QoSE as
previous middlebox management researches in a manner of
resource management; there is a clear distinction apart from
those. We focused on a specialized network architecture for
security services which operates as one powerful middlebox
that has not been considered in early works.

Security enhancement using SDN/NFV: AvantGuard [16]
proposes a secure OpenFlow switch architecture to prevent
network attacks. Although there is no consideration of the
hardware supporting security functions in the current QoSE
design, QoSE can be extended in future work by offering both
hardware support as well as fast attack detection. Braga et al.

[17] propose a DDoS attack detection scheme using the flow
statistic information in the flow table of OpenFlow-enabled
switches. Our work is orthogonal to this research since their
work focuses on a northbound application level of detection in
contrast to the detection by the independent security device.

VII. CONCLUSION

QoSE is a new type of system using SDN/NFV to manage
the network resources flexibly and increase the network utility
by sharing the idle resource. It can also recover from fault
situation automatically, and provide a capability to the users
by selectively choosing the services based on their demand.
Proposed optimal formula and path selection algorithm showed
how to manage the network resources and control the network
flows in the distributed NFV environment. Our contribution
has presented that QoSE enables network providers to ef-
ficiently meet the security objectives for a secure network
environment.

REFERENCES

[1] L. C. R. M. V. S. Zafar Ayyub Qazi, Cheng-Chun Tu and M. Yu,
“Simple-fying middlebox policy enforcement using sdn,” in Proceedings
of the ACM SIGCOMM 2013 Conference on SIGCOMM, 2013.

[2] Open vSwitch, “An Open Virtual Switch,” http://openvswitch.org/.
[3] Xen, “Xen Wiki - Networking,” http://wiki.xenproject.org/wiki/Xen

Networking#Open vSwitch.
[4] L. Cherkasova and R. Gardner, “Measuring cpu overhead for i/o process-

ing in the xen virtual machine monitor,” in Proceedings of the Annual
Conference on USENIX Annual Technical Conference, ser. ATEC ’05.
Berkeley, CA, USA: USENIX Association, 2005, pp. 24–24.

[5] POX, “Python Network Controller,” http://www.noxrepo.org/pox/
about-pox/.

[6] PuLP, “Python linear programming solver,” https://pypi.python.org/pypi/
PuLP.

[7] Raspberry Pi, “Single board PC,” https://www.raspberrypi.org/.
[8] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid

prototyping for software-defined networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks, ser. Hotnets-IX.
New York, NY, USA: ACM, 2010, pp. 19:1–19:6.

[9] iptables, “Linux firewall service,” http://www.netfilter.org/projects/
iptables/index.html.

[10] Snort, “Network Intrusion Detection System,” https://www.snort.org/.
[11] Odroid, “Single board PC,” http://www.hardkernel.com/main/main.php.
[12] S. Shin and G. Gu, “Cloudwatcher: Network security monitoring using

openflow in dynamic cloud networks (or: How to provide security
monitoring as a service in clouds?),” in Proceedings of the 7th Workshop
on Secure Network Protocols (NPSec12), co-located with IEEE ICNP12,
October 2012.

[13] V. Sekar, R. Krishnaswamy, A. Gupta, and M. K. Reiter, “Network-
wide deployment of intrusion detection and prevention systems,” in
Proceedings of the 6th International COnference, ser. Co-NEXT ’10.
New York, NY, USA: ACM, 2010, pp. 18:1–18:12.

[14] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi, “Design
and implementation of a consolidated middlebox architecture,” in Pro-
ceedings of the 9th USENIX Conference on Networked Systems Design
and Implementation, ser. NSDI’12. Berkeley, CA, USA: USENIX
Association, 2012, pp. 24–24.

[15] V. Heorhiadi, M. K. Reiter, and V. Sekar, “Accelerating the development
of software-defined network optimization applications using sol,” arXiv
preprint arXiv:1504.07704, 2015.

[16] S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “Avant-guard: Scalable
and vigilant switch flow management in software-defined networks,” in
Proceedings of the 20th ACM Conference on Computer and Communi-
cations Security (CCS13), November 2013.

[17] R. S. Braga, E. Mota, and A. Passito, “Lightweight ddos flooding attack
detection using nox/openflow,” in Proceedings of the 35th Annual IEEE
Conference on Local Computer Networks, ser. LCN, 2010.

