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Abstract. In this paper, we propose a new network architecture, NET-
WORK IRON CURTAIN that can handle network scanning attacks auto-
matically. NETWORK IRON CURTAIN does not require additional devices
or complicated configurations when it detects scanning attack, and it can
confuse scanning attackers by providing fake scanning results. When an
attacker sends a scanning packet to a host in NETWORK IRON CURTAIN,
NETWORK IRON CURTAIN detects this trial and redirects this packet to
a honeynet, which is installed with NETWORK IRON CURTAIN. The hon-
eynet will respond to this scanning packet based on the predefined policy
instead of the original target host. Therefore, the attacker will have fake
information (i.e., false open port information). We implement a proto-
type system to verify the proposed architecture, and we show an example
case of detecting network scanning.

Keywords: Software-Defined Networking - OpenFlow - Network secu-
rity -+ Scanning attack

1 Introduction

Nowadays, networks are facing many network threats, such as denial of service
attacks, network intrusion attacks, and network scanning attacks. Among them,
network scanning attacks are the most basic and critical threat, because they are
the starting point of following threats. For example, if an attacker wants to infect
a host in a network, he needs to discover some candidate hosts for infection. To
do this, he should first find a host that can be reached through a network and
has some vulnerabilities by sending network packets for scanning.

Likewise, an attacker will start his malicious operations by scanning a net-
work, and thus, network administrators try to defend their networks from this
network scanning attack. In this context, to detect network scanning attacks,
many approaches have been proposed so far, and TRW [17] and RBS [8] algo-
rithms are good examples. They have been implemented in real detection sys-
tems (e.g., Bro network intrusion detection system [1]), and used in real world
networks.
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However, current detection approaches have some limitations. First, it usu-
ally requires steps for determining some configuration variables (e.g., threshold
values) for detection. This limitation has been pointed out by the previous work
[20], and it denotes that detection rates of the popular network scanning detec-
tion approaches (e.g., TRW [17], RBS [8], and MRW [22]) are various according
to the threshold values. Second, they may not detect some stealthy scan trials.
Stafford et al., mentions that one network scan trial per every 10s can avoid
most detection approaches [20]. Third, most detection approaches only provide
ways of detection, and they do not provide some methods to handle scan trials.

To address these issues, in this paper, we propose a new network architecture,
NETWORK ITRON CURTAIN that can detect network scanning trials and handle
them automatically. To detect and handle scanning trials without additional
devices or programs, we employ a new network technology - OpenFlow [11,14],
and it helps us dynamically monitor and control network flows. With the help of
this technology, we can detect network scanning trials by simply adding network
applications running on the OpenFlow controller!. In addition, we do not need
to concern about the configurations for detection systems, because the proposed
network architecture will automatically handle suspicious flows (i.e., flows that
can be considered as scanning trials). Moreover, this architecture will provide
fake information to a network scanning attackers, and it ultimately hides our
networks from attackers.

The contributions from this work can be summarized as follows:

— We propose a new network architecture - NETWORK IRON CURTAIN - that
can detect network scanning trials automatically, and the architecture does
not need to consider additional devices or complicated configurations

— Our approach can confuse attackers by providing fake information of our net-
work,

— We implement a prototype system with Software-Defined Networking tech-
nology (i.e., OpenFlow), and we show example working cases to verify our
approach.

2 OpenFlow

In this section, we describe what is OpenFlow and how it works. OpenFlow (OF)
represents an interface between the data plane and the control plane to sup-
port SDN functions. It specifies the functions of network devices (e.g., switch),
and it also defines the protocol between network devices and a controller that
conducts the function of control plane. Thus, the OpenFlow specification itself
does not cover all functions of SDN. However, we usually use OpenFlow and
SDN interchangeably because the OpenFlow specification [14] is the key part of
SDN technology. OpenFlow enabled network devices (i.e., data plane) are com-
monly cooperated with network controllers (i.e., control plane) such as NOX [7],
Floodlight [5], and POX [16]. A simple OpenFlow enabled network architecture
is shown in Fig. 1.

1 We provide more information about OpenFlow in the next section.
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Fig. 1. High-level overview of OpenFlow switch architecture.
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Fig. 2. A simplified OpenFlow network

How OpenFlow/SDN works: To demonstrate how a typical OpenFlow/
SDN network works, we create a simplified scenario as shown in Fig.2. This
network consists of three hosts, an OpenFlow enabled switch, a controller, and
three applications running on the controller.

Unlike a legacy network device, which makes packet handling decision by
itself, an OpenFlow network device handles network flows based on the flow
rules sent by a controller (and an application), as illustrated in Fig.2. (1) A
new packet arrives. (2) The OF device first checks its flow table. If there is an
existing rule for this flow, it simply follows the rule. (3) Otherwise, it will ask
the controller. (4) The controller application makes a decision and sends a flow
rule back. (5) Finally, the device uses the receive flow rule to handle the packet.
It is worth noting that the OF device only needs to contact the controller for a
new flow that does not have corresponding rule yet, i.e., this operation happens
only for the first packet of a new flow.

3 Design

At a high level, our system checks whether an incoming packet is toward a closed
port or an unused port or corrupted?. If it is, our system considers the packet as

2 We consider that the packet is corrupted if it does not follow the network protocol
standard. For example, if a TCP session is initiated by a TCP RST packet, then we
regard that the RST packet is corrupted.
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Fig. 3. Simplified network architecture and OpenFlow controller diagram

a network scanning trial. If the incoming packet is considered as a network scan
trial, this packet and the following packets from the same source (i.e., from the
same source IP address) will be redirected to our honeynet system. Then, our
honeynet first reacts to the scanning packet based on the predefined policies. In
addition, the honeynet system keeps maintaining the connection, and it tries to
capture more information (e.g., malware binary download) from an attacker.

3.1 Overall Operation

To explain how NETWORK IRON CURTAIN operates and detects network scan-
ning trials clearly, we use a simplified OpenFlow based network architecture
shown in Fig. 3. In this architecture, there is a host (Host D), which opens net-
work port 80 and connected to an OpenFlow enabled switch , and a honeynet
is connected to the switch as well. This OpenFlow switch is controlled by a
controller in the Figure. A network policy table, which will be used to control
network flows, is in the OpenFlow switch, and there is no policy for handling
network flows at this time. Two hosts (Host A and Scanner S) in the Internet
are connected to the OpenFlow switch, and they can contact Host D through
the OpenFlow switch.

Figure 3 also shows the four modules for realizing NETWORK IRON CURTAIN
functions. These four modules are located in the OpenFlow controller; (i) event
handler, which receives reports from the OpenFlow switches about new network
flows or statistical information of flows, (ii) flow analyzer, which analyzes reports
from the OpenFlow switches and decides new policies, (iii) message handler,
which delivers messages of queries or new policies to the OpenFlow switches,
and (iv) timer, which notifies timing events to the flow analyzer.

These operations are similar with the dynamic firewall, that can detect
and block the malicious client. The major strong point of NETWORK IRON
CURTAIN is that all switches can be the dynamic firewall without any firewall
devices. The location of a firewall is the problem, especially in cloud network [18].
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So, NETWORK IRON CURTAIN is a better solution than the several dynamic fire-
wall devices in a large network.

Now, we describe how NETWORK IRON CURTAIN handles network flows to
hide a network from network scanning trials. Here, we mainly describes the cases
of TCP connection cases (including both a normal TCP connection trial and a
scanning trial), because network flows for TCP covers most of network traffic.
We also provide an idea how to handle UDP network flows to harden our system.

3.2 TCP Connection Case

TCP Normal Connection: A normal TCP connection starts with a SYN
flagged packet from an initiator, and if this packet is delivered to a open network
port, which serves network services based on TCP protocol, a SYN/ACK packet
will be answered from the port. And finally, the initiator finishes a connection
set-up by sending an ACK packet (i.e., TCP 3-way handshake).

When a TCP 3-way handshaking happens, NETWORK IRON CURTAIN works
as shown in Fig. 4: (1) Host A sends a TCP SYN packet to the OpenFlow switch,
(2) Since there is no matching policy in the policy table, the switch reports the
information of this packet to the OpenFlow controller. (3) The event handler
in the controller receives this report and delivers to the flow analyzer. The flow
analyzer investigates the packet and it sees the SYN flag in the packet and sets
a timer®, and finally it enforces a new policy, which is forwarding a packet from
the Host A to port 80 in the Host D, to the switch through the message handler.
(4) The switch receives the policy and stores the policy into the policy table.
(5) The switch forwards the packet to port 80 in the Host D. (6) Since the port
80 of the Host D is open, Host D responds with a SYN/ACK packet. (7) The
packet from the Host D (i.e., the SYN/ACK packet from the Host D to the Host
A) does not match any policy in the policy table, thus the switch reports this
to the controller. (8) The controller observes a SYN/ACK flag in the packet,
release the timer for this flow, and enforces a new policy, which is a forwarding
packets from Host A to Host D and from Host D to Host A (i.e., bi-directional
policy). (9) The switch stores the new policy into the policy table. (10) Finally,
the switch forwards the SYN/ACK packet to Host A.

TCP SYN Scanning to Closed Ports: When the Scanner S tries to scan
this network, he is likely to contact closed network ports instead of open ports,
because he usually does not know which port is open, and thus he may choose
some random ports. In our test scenario, we assume that the Scanner S contacts
port 445 for scanning.

When a TCP SYN scanning trial happens, our system performs as shown
in Fig.5: (1) Scanner S sends a TCP SYN packet to the Openflow switch. (2)
Since there is no matching policy in the policy table, the switch reports the
information of this packet to the Openflow controller. (3) The flow analyzer in
the controller investigates the packet, sees the SYN flag and sets the timer, and

3 This timer will be used to detect TCP SYN scanning trials. We will show how the
controller uses this timer in the following case.
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Fig. 4. Normal TCP connection

finally enforces a new policy, which is forwarding a packet from the Scanner S to
port 445 in the Host D. (4) The switch receives the policy and stores the policy
into the policy table. (5) The switch forwards the packet to port 445 in the Host
D. (6) At this time, since Host D does not open port 445, it responds differently
from the normal case. There are two cases in the response of the Host D based
on its network stack implementation or its security policy. It responds with a
RST packet to tear down the connection or it does not reply with any packet.
(7) Here we have two cases (i) if the Host D replies with the RST packet, the
switch reports this to the controller because there is no matching policy. The flow
analyzer observes that there is a RST flag in the packet thus it knows that the
port is closed (scan detection). (ii) If the Host D does not reply, the switch will
not receive any packet and it will not report anything to the controller. Thus,
the timer for this flow in the controller will be expired thus the flow analyzer
knows the port is closed (scan detection). (8) The flow analyzer enforces a new
policy. At this time, the policy is to redirect packets from the Scanner S to
the Honeynet. (9) The switch stores the new policy into the policy table. (10)
The switch redirects the any following scanning packets from the Scanner S to
the Honeynet (i.e., a scanner will send more than one packet to a target network).
(11) Finally, the Honeynet will respond to the Scanner S to confuse him (i.e.,
the Scanner S may receive some response packets from the honeynet, and he
regards that he can successfully scan the host D).

TCP FIN/NULL/X-MAS Scanning: Beside a TCP SYN scanning, the
Scanner S can employ other techniques such as FIN and X-MAS scanning. In
these cases, the main difference between these and the TCP SYN scanning is
that whether there is a SYN flag in the first packet for connection or not. These
cases can also be detected by NETWORK IRON CURTAIN easily.
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Fig. 6. TCP Non-SYN scanning trial

When this scanning trial happens, our system operates as shown in Fig. 6: (1)
a Scanner S sends a TCP FIN packet to the OpenFlow switch, (2) Since there is
no matching policy in the policy table, the switch reports the information of this
packet to the OpenFlow controller, (3) The flow analyzer investigates the packet
and it sees the FIN flag. However, this is the first packet for a TCP connection,
thus any other flags except SYN are not allowed. From this, the flow analyzer
understands that it is a scanning trial. The flow analyzer enforces a new policy,
which is to redirect packets from the Scanner S to the Honeynet. (4) The switch
stores this policy into the policy table. (5) The switch will redirect the packet to
the Honeynet. (6) The Honeynet will response with a RST packet to the Scanner
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S. The other scanning trials such as a X-MAS scanning could be also handled
by the same approach shown here.

3.3 UDP Connection Trials

Since there is no pre-defined connection set-up (i.e., 3-way handshaking in TCP
protocol) in UDP protocol, we can not employ the previous approach for UDP
protocol. However, we expect that most UDP connections operate as a request-
and-reply manner. For example, in the case of a DNS service, if a client sends a
query (i.e., DNS Q query using UDP protocol) to a DNS server, the server will
respond (i.e., DNS A query using UDP protocol). It also can be applicable to
network scan attackers because they will expect some responses from a port in
order to understand whether the port is open or not.

Based on this intuition, we use the approach used in the previous case (i.e.,
TCP protocol case), but the approach for UDP protocol differs in that we only
investigate suspicious connections based on timer. In the case of TCP protocol,
to know whether a packet is for a scan attack or not, we parse the packet to
investigate whether there are flags which denote success/failure of the connection
(i.e., SYN, SYN/ACK, RST, and FIN flags) or we check a timer. Since UDP
protocol does not have these flags, we only use a timer to find a scan attack.
If there is a packet to an UDP port but no reply within certain time value, we
consider that the packet is for network scanning. Thus, the overall operation is
the same as shown in Fig.5 (only considering timer).

The attack using one-way UDP streams is out of scope in this paper. Since
the one-way UDP stream does not issue any reply, it is not a scanning attack
but a kind of DoS attack. (Using the SDN statistics like the incoming packet per
seconds, we can block DoS attack too.)

3.4 Honeynet

If we detect scan packets, we redirect them and successive packets of them (in the
same flow) to a honeynet. The honeynet consists of multiple honeypots and each
honeypot emulates possible vulnerable network services. The attacker mistakes
the honeynet for the original one. In addition to confusing network scanner, the
honeynet can collect the attack information. The collected attack pattern can
be very useful to prevent and detect the another attack. At this time, we can
have two different strategies to confuse network scanners; (i) all-alive network,
and (ii) phantom network. These two approaches are only different from each
other in some configurations, thus we can easily apply any case that we want.

All-Alive Network: In this case, our honeypots open all network ports even
there are no popular network services. Current honeypot programs open some
networks ports to emulate network services but they may not emulate all possible
network services. Thus, we simply run a simple network program to cover all
other network ports which are not covered by honeypot programs. For example,
if a honeypot program opens network port 80, 445, and 8080, out program will
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open other network ports from 1 to 65545 (except 80, 445, and 8080) and wait
network requests. However, this program does not emulate network services, it
only reply with simple predefined data.

Phantom Network: Network scanning attackers may think that it is not com-
mon that most (all) network ports are open. They may understand that there is
an approach to confuse themselves. To deceive network scanning attackers more
effectively, we can make fake network environments. We randomly select some
network services and let honeypots only open network ports for them. It looks
like another network environment, but its configuration is totally different from
original one which we want to protect from network scanning attacks.

4 Implementation and Evaluation

In this section, we describe how we have implemented the proposed system, and
we explain the evaluation environment and results.

4.1 Prototype Implementation and Evaluation Environment

We have implemented a prototype system for NETWORK IRON CURTAIN to verify
our proposal. Our prototype has been implemented as an application program
running on POX controller [16]. In this application, we have implemented four
modules explained in Fig. 3.

We have used mininet [12] to evaluate our prototype Iron Curtain. Using the
typical mininet virtual machine and configuration [12], we have simulated the
simplified network environment shown in Fig. 3. There is one OpenFlow enabled
switch controlled by NETWORK IRON CURTAIN, and the switch has 3 physical
ports that are connected with 3 virtual hosts. These ports are connected to
a client (Host A in Fig.3) that act as a benign client or a network scanning
attacker, a server (Host D in Fig.3), and a honeynet.

4.2 Evaluation Results

Figures 7 and 8 shows the start-up of mininet simulator and POX controller
with NETWORK IRON CURTAIN. Figure 7 shows that we add 3 hosts (hl, h2,
and h3 in line 6) and a switch (sl in line 8), and it also shows that each host is
connected to a switch (in line 10). Here, we use the host hl as a normal client
or a scanning attacker (i.e., Host A), and the host 3 is regarded as a honeynet.
The created virtual switch (i.e., s1) in this mininet network is connected to the
POX controller, and it is presented in Fig. 8 (in line 8).

First, we test the normal flows in Fig.4. To do this, we run a simple TCP
echo server on the host h2 and run a TCP echo client on the host hl. Figure9
shows that a new flow set up for the SYN packet and the other new flow also
set up for the reply packet. This Figure presents that a TCP SYN packet is
delivered from the host hl (line 2), and the packet is forwarded to the host h2
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Fig. 8. Console screen for launching NETWORK IRON CURTAIN on the POX controller
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Fig. 10. Console message for detecting a TCP scanning trial

(line 4). A TCP SYN/ACK packet from the host h2 (line 5) is forwarded to the
host hl (line 7).

Second, we test a network scanning trial to a closed network port case in
Fig.5. At this time, the Host D does not run a echo server, and we run a simple
scanner at the host A to scan a network port for a TCP echo service in the
Host D. However, since the Host D does not open this port, the Host D will
return a TCP RST packet to the scanner. Figure 10 shows the detection of this
scanning trial. NETWORK IRON CURTAIN first detects this scanning trial when
it finds a TCP RST packet (line 6), and it forwards this packet to the honeynet
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(line 7). Finally, the honeynet will return a fake packet to confuse the scanning
attacker (line 9).

5 Related Work

There are some previous studies to defend a network from network scanning
attacks. TRW [17], RBS [8], and MRW [22] are good example techniques for
this. They are different from our work in that they require additional moni-
toring devices or network mirroring techniques. In addition, they just focus on
detection, and they do not provide an way of handling detected scanning packets.

Recently, some research based on OpenFlow technique has been proposed to
hide networks from network scanning. FRESCO [19] provides an way of imple-
menting reflector network, and Random host mutation technique [9] has been
suggested to hide a network from scanning trials. Our work is different from
them in that the goal is different (proposing a new network architecture vs. a
framework for developing security applications) and the approach is different
(detecting network scanning and remove the effect vs. varying the IP address of
hosts in a network).

Some approaches without using OpenFlow have been proposed to hide a
network. Gu et al., propose an approach of whitehole technique [6] to hide a
network from scanning trials. Although its goal is similar to our approach, it
requires additional devices that can modify network packets, and it is not easy
to deploy in a real world network. The idea of tarpit has been proposed to reduce
the effect of computer worm [10], and this idea can also be used to reduce the
effect of network scanning. However, this approach is clearly different from our
work in that it requires complicated configurations of software or hardware.

6 Limitation and Discussion

Although NETWORK IRON CURTAIN can detect network scanning trials and
remove the effects of scanning, it has some limitations. First, it can delay the
performance of overall network throughput. Since NETWORK IRON CURTAIN
needs to monitor all possible TCP sessions, it should control network flows in a
fine-grained way. However, we believe that it is the common problem for most
Software-Defined Networking architecture, and the it only adds delays to network
packets for connection setup. Once a connection has been established, NETWORK
IRON CURTAIN does not affect the performance. The performance of the con-
troller is a common concern in the SDN studies. Tootoonchian et al. shows that
the controller with the common PC server can endure enough traffic [21]. The
DoS attack to the SDN contoller is also an important research issue [2,23].
Second, it is possible that there are some false positives when NETWORK
IRON CURTAIN redirects suspicious packets to a honeynet. If a benign client
contacts a closed port by mistake, following packets from this client could be
considered as suspicious packets. To address this issue, we can hire some repu-
tation technology to investigate whether a host is really malicious or not. There
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are several studies that try to detect network scanning attacks or web based
attacks and Dshield [3] and FIRE [4] are good examples of them. Dshield [3]
provides information to detect hosts or ASes sending suspicious network scan-
ning/attacking packets, and FIRE [4] lists malicious ASes by measuring their
reputation. Clearly speaking, NETWORK IRON CURTAIN can maintain some his-
tory information for scanning trials from each host. Although NETWORK IRON
CURTAIN detects a failed TCP session from a host, it does not simply redirect
all future packets to a honeynet (but investigates more), if a host sends benign
packets in the past (normal TCP connections).

Third, NETWORK IRON CURTAIN needs OpenFlow-enabled devices, although
it does not need any security devices. The switching cost to the OpenFlow-
enabled network would be a entry barrier. But the application area of OpenFlow
does not only focus on the security [13,15], and some are already applied into
realworld network environments [24]. The SDN technology is already spreading
widely.

7 Conclusion and Future Work

In this paper, we propose a new network architecture - NETWORK IRON CURTAIN
- to hide a network from network scanning trials. The proposed network archi-
tecture employs the functions of OpenFlow technology, and it can performs its
operations without adding third-party devices or programs. In the near future,
we will deploy the proposed network architecture in a real network environ-
ment. In addition, we will test more diverse network scanning cases to verify the
proposed network architecture.
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