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Abstract—Cloud computing is becoming a popular
paradigm. Many recent new services are based on cloud
environments, and a lot of people are using cloud networks.
Since many diverse hosts and network configurations coex-
ist in a cloud network, it is essential to protect each of them
in the cloud network from threats. To do this, basically, we
can employ existing network security devices, but applying
them to a cloud network requires more considerations for
its complexity, dynamism, and diversity. In this paper,
we propose a new framework, CLOUDWATCHER, which
provides monitoring services for large and dynamic cloud
networks. This framework automatically detours network
packets to be inspected by pre-installed network security
devices. In addition, all these operations can be imple-
mented by writing a simple policy script, thus, a cloud
network administrator is able to protect his cloud network
easily. We have implemented the proposed framework, and
evaluated it on different test network environments.

I. INTRODUCTION

The main characteristics of cloud computing can be
summarized as follows. First, it is a large-scale environ-
ment that consists of many physical hosts and virtual
machines (VMs). For example, some study showed that
Amazon EC2 Cloud runs at least half million physical
hosts [1]. This is not the end, because each host will
serve multiple virtual machines. Assuming each host
serves on average ten virtual machines, Amazon EC2
Cloud operates almost five millions virtual machines.
Second, the configuration of a cloud computing environ-
ment is quite complicated. To manage a cloud network,
we should consider the large number of diverse, net-
worked physical/virtual machines and the large number
of diverse cloud consumers/tenants who may require
very different networking configurations. Third, it is
quite dynamic. One of the interesting functions of cloud
computing is an on-demand service, and it means that if a
certain service is massively required, a cloud computing
environment will run more VMs for the service at that

time. Thus, virtual machines in a physical host can be
dynamically invoked or removed, and they can even be
migrated to other physical hosts.

Generally, to protect a regular Enterprise network, we
use some network security devices such as firewalls and
network intrusion detection systems (NIDS). Then, is it
easy or simple to apply current network security devices
to a cloud network environment? It is possible to apply
them, however, given the above-mentioned characteris-
tics of cloud computing, there are several hard-to-ignore
issues when we deploy network security devices and
provide a network security monitoring service in a cloud
network environment.

First, we should care about threats from both outside
and inside. Basically, most network security devices are
installed into a place where a network is connected to
the outside (a.k.a., DMZ), because we assume that most
network threats are delivered from outside networks.
However, in the case of a cloud network, we can not
totally rely on that assumption. For example, in the
case of public multi-tenant cloud networks, they some-
times impose responsibility of security considerations on
consumers/tenants themselves, and it could increase the
chance of malware infection of internal hosts/VMs for
those insecure consumer networks[4]. In this case, if an
internal VM is infected, it could infect nearby VMs (may
be owned by other cloud consumers/tenants). However,
it will not be detected by security devices installed at
DMZ. Then, how can we detect this kind of attacks? One
way may be to install security devices for every internal
(consumer/tenant) networks, e.g., distributed firewalls
[8]. Then, where should we install security devices?
Since a cloud network is quite complicated and hard
to reconfigure, we should carefully investigate appropri-
ate locations for installing security devices. Otherwise,
we may need to reconfigure or move security devices



frequently, and it is not an easy job.
Second, we should deploy network security devices

considering the dynamism of cloud computing. Let’s
consider a case that we install a NIDS on a link between
host A and host B, and we let the detection system
monitor network traffic produced by a virtual machine
running in host A. However, if virtual machines in host A
move/migrate to another host C, then we need to relocate
the detection system to a link between host A and host C.
This kind of virtual machine migration is quite frequent
in cloud computing.

To address these issues, we propose a new frame-
work, CLOUDWATCHER, and it provides the following
benefits: (i) it controls network flows to guarantees that
all necessary network packets are inspected by some
security devices and (ii) it provides a simple policy script
language to help people use provided services easily.
As compared with configuring real physical devices,
controlling the paths of network flows to pass through
certain network nodes is much easier to realize. More-
over, some recent technologies such as software-defined
networking (SDN) provide a way of controlling network
flows as we want. With the help of these technologies,
CLOUDWATCHER changes the routing paths for network
flows, and it makes the flows transmit through network
nodes where security devices reside. In addition, we
design a simple policy script language to let a cloud
administrator/operator use our framework without diffi-
culty. It is quite intuitive, easy to learn, and simple to
use.

II. DESIGN

A. Overall Architecture

Basically, CLOUDWATCHER can be realized as an
application on top of network operating systems (e.g.,
NOX [6] and Beacon [2]), which are used to con-
trol network routers or switches in SDN environments.
CLOUDWATCHER consists of three main components:
(i) device and policy manager, managing the information
of security devices, (ii) routing rule generator, creating
packet handling rule for each flow, and (iii) flow rule
enforcer, enforcing generated flow rules to switches. The
overall architecture of CLOUDWATCHER is shown in
Figure 1.

B. How CLOUDWATCHER Works

1) How to Register Security Devices: To use security
devices through CLOUDWATCHER, we first need to
register them. This job is quite simple, and it just asks to
submit some basic information of each network security
device. Currently, CLOUDWATCHER asks the following
information for registration; (i) device ID, which is a
unique identifier, (ii) device type, which denotes the main
function of a device (e.g., NIDS or F/W), (iii) location,

Fig. 1. Overall Architecture

which represents the network location where a device is
installed, (iv) installation mode, which reveals how it is
installed, here we currently support two modes (passive
and in-line), and (iv) supported functions, which describe
what kinds of security functions are provided by the
device. All the information can be specified by a SLI-
registration script.

To make an example scenario, let’s assume that we
have installed a network intrusion detection system
(NIDS) in passive mode (i.e., mirroring), and it is
attached to a router whose device ID1 is 8. In addition,
we also assume that this device can monitor network
packets related to HTTP and detect attacks to web
servers. Then, we register this device using SLI-
registration script as follows.

{1, NIDS, 8, passive, detect HTTP attack}
2) How to Create Security Policies: To create a

security monitoring service for any individual security
requirement, a cloud administrator can create a security
policy, which consists of 2 fields: (i) flow condition,
which represents the flow to be investigated, (ii) device
set, which displays necessary security devices for inves-
tigation. The security policy is specified in a SLI-policy
script.

In the flow condition field, the administrator can
define many different types of conditions, and they
depend on matching fields that are supported by the
SDN specification (e.g., OpenFlow specification [3]).
For example, in the case of OpenFlow, there are 15
matching fields in the OpenFlow specification, and the
network administrator can use these matching fields to
set up the flow condition field. In this work, we simply
adopt 4-tuple information (source/destination IP address

1This ID can be obtained by applying Link Layer Discovery Protocol
(LLDP) [15] query.
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and source/destination port) for the flow condition field
to simplify the implementation, but these fields can be
extended easily.

An administrator can specify which security devices
are used to monitor network packets, and it will be
specified in the device set field. In addition, he can
specify multiple devices for monitoring in this field. For
example, if he wants to employ two different security
devices (assuming that their IDs are 1 and 2), he can set
{1, 2} to denote them.

If an administrator wants to monitor network packets
from 10.0.0.1 to 11.0.0.1 by employing a NIDS, whose
device ID is 2, and to respond with passive mode drop,
the example policy written in SLI-policy scripts is like
the following.

{10.0.0.1:* → 11.0.0.1:*, {2}}
3) How to Control Network Flows: If CLOUD-

WATCHER finds network packets meeting a flow con-
dition specified by a policy, then it will route these
packets to satisfy security requirements. When CLOUD-
WATCHER routes network packets, it should consider
the following two conditions: (i) network packets should
pass through some specific routers or network links,
which specified security devices are attached to, and (ii)
the created routing paths should be optimized.

There are several existing routing algorithms for intra-
domain (e.g., OSPF [7]) to find optimal paths. However,
they can not be employed directly for our case. Since
network packets only contain the source and destina-
tion information, existing routing approaches can not
discover necessary ways to locations where security
devices are installed. Thus, we need to create our own
approaches.

Recent software-defined networking technologies
(e.g., OpenFlow) provide several interesting functions,
and one of them is to control network flows as we want.
With the help of this function, we propose 4 different
routing algorithms, which can satisfy our requirements.
To describe our algorithms more clearly, we first explain
how we can find the path between two nodes.

A network can be characterized using a graph struc-
ture, which consists of nodes (hosts or routers or
switches) and arcs (physical links between devices). In
this graph structure, we need to find some paths between
a start node, which sends network packets, and an end
node, which receives network packets. At this time,
we usually want to find the shortest path2 between a
start node and an end node to deliver network packets
efficiently. The problem of finding the shortest path
between two nodes is a type of a linear programming,

2Here, the shortest path means that the path represents the lowest
network link cost, and the network link cost can be determined by
several features, such as network capacity and current load.

and it can be formulated as the minimum cost flow
problem [10]. To do this, we first need to define some
variables: xi,j , which represents the amount sent along
the link from node i to node j, and bi, which means
the available supply at a node (if bi ≤ 0, then there is a
required demand). In addition, we assume that a network
is balanced in the sense that

∑n
i=1 bi = 0. Considering

the unit cost for flow along the arc between two nodes
i and j as ci,j , the minimal cost flow problem can be
formalized as the following mathematical terms in Eq.
1.

min
∑

ci,jxi,j

s.t
n∑

j=1

xi,j −
n∑

k=1

xk,i = bi for i = 1, 2, ... n

xi,j ≥ 0 for i,j = 1, 2, ... , n

(1)

Based on this Eq. 1, we can find the shortest path
between two nodes3. We will use this result as a primitive
to find paths satisfying the conditions in our problem
domain. For brevity, when we find the shortest path be-
tween a and b, we denote Eq. 1 as find shortest path(a,
b). In addition, we define the following 4 terms to explain
our algorithms more clearly: (i) start node, a node sends
network packets, (ii) end node, a node receives the
packets, (iii) security node, a node mirror packets to a
passive security devices, and (iv) security link, a link on
which in-line security devices are located. Among the
proposed 4 algorithms, 3 of them (i.e., Algorithm 1 - 3)
are designed for security devices that monitor network
packets passively, and 1 of them (i.e., Algorithm 4) is
suggested for in-line security devices such as a firewall
and a network intrusion prevention system (NIPS).

To describe the proposed algorithms more clearly,
we will provide concrete examples to illustrate the key
concept of each algorithm. For the illustration, we use
a simple network structure as shown in Figure 2(a). It
contains six routers (R1 - R6), a start node (S), an end
node (E), and a security device (C) attached to node
R4 (thus R4 is a security node). We assume that node
S sends packets to node E, and our example security
policy is specified that all packets from node S to node
E should be inspected by security device C. Furthermore,
Figure 2(b) shows the traditional packet delivery based
on the shortest path routing without considering the need
of security monitoring. Thus, packets from node S are
simply delivered through the path of (S → R1 → R5
→ R6 → E), and obviously in this case they can not be
inspected by the security device C. Next we will describe
how our new algorithms work and illustrate them on the
same network structure.

3We do not talk about how we can solve this problem in this work,
because it is well-known [10], and it is not our main focus.
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(a) Network Layout (b) Shortest Path (c) Algorithm 1 (multipath-naive)

(d) Algorithm 2 (shortest-through) (e) Algorithm 3 (multipath-shortest) (f) Algorithm 4 (shortest-inline)

Fig. 2. Example Scenario for Each Algorithm. Here S is a start node, E is an end node, R1 - R6 are routers, and C is a security device.

Algorithm 1 (multipath-naive): First, we design a
simple algorithm to visit each security node regardless
of the path between a start node and an end node. In this
algorithm, CLOUDWATCHER first finds the shortest path
between a start node and an end node. Then, CLOUD-
WATCHER also discovers the shortest paths between a
start node and each security node. If CLOUDWATCHER
has all paths, it delivers packets to all obtained paths.
This approach is based on a function of OpenFlow
that can send network packets to multiple output ports
of a router. Thus, CLOUDWATCHER can send network
packets to different paths simultaneously (multipath).
This algorithm is illustrated in Figure 2(c). As we can
see, we now have two data forwarding paths. One path
is the shortest path from node S to node E (S → R1 →
R5 → R6 → E), and the other one is the shortest path
from node S to node R4 (R1 → R2 → R3 → R4).

Algorithm 2 (shortest-through): The second ap-
proach is to find the shortest path between a start node
and an end node passing through each intermediate
security node. Finding this path is more complicated than
finding the shortest path between two nodes, because
in this case, we should make sure that the found path
includes all intermediate nodes. To do this, CLOUD-
WATCHER finds all possible connection pairs among
all nodes (including the start, the end, and the security
noded) by performing permutation of all pairs, and then,
it investigates the shortest paths of each pair. After this
operation, it checks possible paths between a start node
and an end node, and it could generate multiple paths.
Finally, CLOUDWATCHER finds the path that has the
minimum cost value. This algorithm is illustrated in
Figure 2(d). This time we need to find the shortest path
between node S and node E passing through node R4.
The final path selected by Algorithm 2 is the path of (S
→ R1 → R2 → R3 → R4 → R6 → E), as shown in
Figure 2(d).

Algorithm 3 (multipath-shortest): As we mentioned
previously, OpenFlow supports the function of sending
out network packets to multiple outports of a router
simultaneously, and Algorithm 1 is based on this func-

tion. However, it may not be efficient, because it can
create multiple redundant network flows. Thus, we try
to propose an enhanced version of Algorithm 1. The
concept of this enhanced algorithm is similar to that of
algorithm 1. However, this approach does not find the
shortest path between a start node and each security
node, instead it finds a node, which is closest to a
security node and in the shortest path between the start
node and the end node. If it finds the node, it asks this
node to send packets to multiple output ports: (i) a port
that is connected to the next node in the shortest path,
and (ii) (a) port(s) that is (are) connected to (a) node(s)
heading to (a) security node(s). Thus, network packets
are delivered through the shortest path, and they are
delivered to each security node as well. This algorithm is
illustrated in Figure 2(e). In this case, CLOUDWATCHER
delivers packets through the same shortest path as the
path of Figure 2(b). At the same time, CLOUDWATCHER
also sends packets to security node R4 from node R6,
which is the closest node to R4.

Algorithm 4 (shortest-inline): Previously, we have
presented three algorithms, and they are applicable to
the case, if security devices monitor networks passively.
However, if a security device is installed as in-line mode,
the situation should be changed. For passive monitoring
devices, we can simply find a path passing through each
security node, however, in the case that there is a security
device working in the in-line mode, we are required
to consider both of security nodes and security links
(between two nodes). Even though a path includes two
nodes for a link, it does not guarantee that the link is
used for the path, because each node could be linked
to another nodes. To address this issue, we modify our
Algorithm 1 to make sure that it should include security
links in the generated path. Thus, Algorithm 4 has a
routine checking whether security links are included or
not. This algorithm is illustrated in Figure 2(f). Unlike
previous algorithms, Algorithm 4 considers an in-line
security device. Thus, node C is located between node
R3 and node R4. Packets are delivered through the path
of (S → R1 → R2 → R3 → R4 → C → R6 → E) based
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on the algorithm.

III. IMPLEMENTATION

To verify our ideas, we have implemented the pro-
posed framework based on OpenFlow specification [3].
It is realized as an application on top of NOX [6], which
is a popular network operating system for OpenFlow
network, and it is implemented in approximately 1,400
lines of python codes. We explain how we implement
each module as follows.

Device and Policy Manager: This module maintains
two tables: (i) device table, which contains information
of each security device, and (ii) policy table, which has
each security policy information. Each table has been
implemented as a simple hash table.

Routing Rule Generator: This module first needs
to understand the topology of the underlying network.
Thus, when CLOUDWATCHER is operated, this module
sends queries to network switches or routers using LLDP
(Link Layer Discovery Protocol) [15]. After collect-
ing responses from routers or switches, this module
generates a network topology as a graph structure. In
addition, this module collects network status information
to estimate the cost of each network link. To estimate the
cost, it periodically sends query through NOX APIs. To
find the shortest path between two nodes, this module
employs a modified Dijkstra’ algorithm [14].

Flow Rule Enforcer: This module parses routing
rules or response strategies, and it translates them into
flow rules for OpenFlow routers or switches. And it
sends the translated rules to routers or switches through
NOX APIs. It also receives flow requests from routers
or switches, and it delivers them to other modules.

IV. EVALUATION

A. Evaluation Environment

To evaluate our framework, we have operated the
implemented prototype framework over the mininet envi-
ronment [11]. Mininet is a system to help us implement
software-defined networking prototype rapidly, and it is
commonly used in testing new OpenFlow applications.
We have emulated two different network topologies over
mininet. The first topology consists of 6 routers and the
second topology is composed by 12 routers. In each
topology, we have inserted 1 - 3 security devices into
a different location, and we have installed 1 - 3 in-line
mode firewalls when we have tested algorithm 4. All
these tests are conducted in a machine with Intel Core2
Quad processor and 2 GB memory.

In addition, to compare the performance of the pro-
posed routing algorithms, we have implemented a basic
routing module based on the Dijkstra’s shortest path
finding algorithm. This module simply routes traffic in
the shortest path from the start node to the end node

Fig. 3. Flow Rule Generation Time Measurement (6 routers)

without considering any security devices. We denote this
baseline method as shortest, and we will measure how
much overhead our proposed routing algorithms will add
to this baseline method.

B. Preliminary Evaluation Result

We measure the time of each flow rule generation
algorithm. This time is very important, and it helps us
understand the performance of the network controlled
by a SDN technique. For example, if it takes a 1ms
to generate a flow handling rule for a network flow, it
means that the system can handle 1,000 new flows every
second.

In our preliminary results, we find that the generation
time of Algorithm 1 is very close to the simple shortest
path routing algorithm. As shown in Figure 3 and Figure
4, Algorithm 1 denotes that it only adds a small time
delta (i.e., around 0.02ms, when there are 6 routers and
1 security device) to the generation time of the shortest
method. Even when there are 3 security devices, it only
adds 0.12ms. That is, if we employ Algorithm 1 for a
network with 12 routers and 3 security devices, it can
route 4,166 new flows every second. And this values is
comparable to the case of the shortest method (i.e., 5,555
flow rules per second).

Other algorithms take more time, and it is very natural
because they need to conduct relatively complicated
graph analysis. However, we observe that even in the
worst case (i.e., algorithm 3 with 12 routers and 3
security devices), it only takes 1.18ms to generate flow
rules. And it means that this worst case algorithm can
still handle around 847 new flows in a second.

V. RELATED WORK

OpenSafe [5] provides an interesting script language
to monitor network traffic efficiently. It might be the
closest study to our work. However, our work is different
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Fig. 4. Flow Rule Generation Time Measurement (12 routers)

in the following aspects: (i) our work mainly focuses on
providing security to cloud networks, and it considers
the characteristics of each security device; and (ii) our
work provides several different routing algorithms for
security purpose. In addition, there are several interesting
studies to provide high level languages for OpenFlow
(e.g., Nettle [16] and Frenetic [12]). Even though our
work also considers a high level language (i.e., policy
script), the main goal of our work is not on the language
itself, and it is quite different from them.

Sekar et al., suggest an approach for NIDS or NIPS
deployment [17], and it selectively monitors network
packets to optimize their resources. However, this work
mainly focuses on how to select network packets, and it
does not consider changing routing paths for its purpose.
Raza et al., introduces a new approach to route packets to
network monitoring points [13]. Even though our work
is similar in that our work finds new routing paths for
security devices, our work provides in-depth analysis of
routing algorithms, and it provides more diverse routing
strategies considering security devices.

VI. LIMITATION AND DISCUSSION

Our framework has several limitations. First, there
could be some cases that CLOUDWATCHER may not
generate routing paths. For example, if a network ad-
ministrator specifies two security devices that can not
communicate with each other, our algorithms will fail in
generating paths. However, CLOUDWATCHER can show
a warning message for this physically impossible routing
path.

If there are many new flows in a cloud network,
it is possible that CLOUDWATCHER suffers from the
performance problem. To solve this issue, we can oper-
ate CLOUDWATCHER on distributed network operating
systems (e.g., Onix [9]).

VII. CONCLUSION

CLOUDWATCHER is a new framework to help a cloud
operator monitor a cloud network easily and efficiently,
and it provides security monitoring as a service to its ten-
ants. The proposed routing algorithms are able to provide
dynamic monitoring of network flows in cloud networks
in an optimized fashion. Since all these operations can
be executed by a simple script language, we believe
that CLOUDWATCHER can provide practical and feasible
network security monitoring in a cloud network.
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