
UNISAFE: A Union of Security Actions for Software
Switches

Taejune Park
KAIST, Republic of Korea

taejune.park@kaist.ac.kr

Yeonkeun Kim
KAIST, Republic of Korea

yeonk@kaist.ac.kr

Seungwon Shin
KAIST, Republic of Korea
claude@kaist.ac.kr

ABSTRACT
As Software-defined architectures, such as Software-Defined
Networking (SDN) and Network Function Virtualization (NFV),
are getting popular, the necessity of software-based switch
(a.k.a., software switch) is also increasing because it can
adopt new functions/features without much difficulty com-
pared with hardware-based switches. Nowadays we can eas-
ily observe that researchers devise new network functions
and embed them into a software switch. However, most
those proposals are highly biased at network communities,
and thus it is hard to find some trials of leveraging the abil-
ities of a software switch for security. In this paper, we con-
sider that how we can enrich security functions/features in
software-defined environments, and in this context we pro-
pose a new software switch architecture - with the name of
Unisafe - that can enable diverse security actions. Fur-
thermore, Unisafe provides action clustering which joins
Unisafe actions of multiple-flows together. It makes that
Unisafe can check flows synthetically, and thus a user can
establish effective security policies and save system resources.
In addition, we describe the design and implementation of
Unisafe and suggest some use-cases for how Unisafe works.

1. INTRODUCTION
Software-Defined Networking (SDN) and Network Func-

tion Virtualization (NFV) are now considered as new net-
working paradigms for future networking environments. They
are currently changing networking environments, and they
provide many opportunities in devising new networking tech-
niques. In addition, this paradigm change also requires the
rapid adoption of new functions/features, and it leads us to
employ another technology - software-based switch (a.k.a.,
software switch).

Unlike a hardware-based switch whose most functions are
already embedded as a form of hardware logic, a software
switch can be easily modified, and thus we can add any new
functions/features without difficulty. Therefore, many sys-
tems such as virtual machines [15, 2] or cloud frameworks

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SDN-NFVSec’16, March 11 2016, New Orleans, LA, USA
c© 2016 ACM. ISBN 978-1-4503-4078-6/16/03. . . $15.00

DOI: http://dx.doi.org/10.1145/2876019.2876025

[10] have started employing software switches in their sys-
tem.

However, although the popularity of a software switch
is increasing rapidly, its usage pattern is quite restricted,
specifically networking monitoring and management. In ad-
dition, most research projects about a software switch have
highly focused on improving its performance [3]. As a result,
software switches can show an impressive performance and
usefulness as a switch.

Likewise, a software switch can embed diverse new fea-
tures, and its performance is dramatically improved. Then,
can we leverage this software switch in some other areas,
such as security? Basically, a software switch does not in-
clude some security concepts, but we believe that its basic
feature (and its surprising extensibility) can be used for secu-
rity purposes. Of course, some researchers have already pro-
vided security functions to software switches. Avant-Guard
[13] and Mekky et al. [7] are typical trials to include se-
curity functions in software switches. Avant-Guard imple-
mented a connection migration and trigger modules into a
programmable switch, and Mekky et al. suggested a method
enabling customized packet handling. However, they are in-
flexible and inconvenient to deploy since they only detect
specific attacks or need additional configurations.

To address this issue (i.e., enabling diverse security func-
tions at a software switch), we devise new security actions1

called Unisafe, which is a union of security actions for soft-
ware switches. A user can use those security actions similar
with other OpenFlow actions, and those actions enable a
software switch to easily provide fine-grained security ser-
vices without deploying additional devices or applications.
Furthermore, Unisafe also supports an attractive function,
action clustering, which clusters several Unisafe actions
as a single action. It enables multiple-flows to share one
Unisafe action, so that a user can establish effective secu-
rity policies and save system resources.

In this paper, we describe the design of Unisafe, and a
prototype implementation of Unisafe on Open vSwitch [9],
which is one of the most popular software switches in these
days. Furthermore, we evaluate our prototype Unisafe to
verify its feasibility and efficiency.

To this end, this paper provides the following contribu-
tions:

• We propose a union of security actions for software
switches called Unisafe, and it provides software-based

1Here, we mainly consider OpenFlow [6] based actions, such
as forward and set, in enabling security functions, because
OpenFlow is a de-facto standard protocol for SDN.

13

network security functions as extended switch opera-
tions without any hardware device or application.

• We introduce action clustering which is a technique
to logically integrate multiple Unisafe actions into a
single action. This technique realizes complicated se-
curity policies and even reduces the resource usage of
the software switch.

• We implement a prototype of Unisafe on Open vSwitch
with three example Unisafe actions: DoS Detector,
Scan Detector, and Deep Packet Inspection. Our eval-
uation indicates that Unisafe can provide flexible se-
curity services only with a small overhead.

• We provide several use cases to show how Unisafe
can be employed in some feasible examples using a
well-known software switch. They demonstrate how
our system is easy to use and simplifies complicated
security policies.

2. BACKGROUND
Before explaining Unisafe, we look into a software switch

and its operational scenario by examining a well-known open-
source software switch - Open vSwitch [9].

2.1 Software switch
A software switch is a switch platform which runs as soft-

ware purely to provide various service environments easily,
and it is introduced to overcome the limitations of legacy
network devices (e.g., inflexible management and expensive
maintenance). This software switch usually handles network
flows with software modules, and it is commonly made up
with a user-space daemon and a kernel-space module. The
user-space daemon is in charge of taking new rules and send-
ing them to the kernel-space module. The kernel-space mod-
ule is in charge of processing traffic according to flow rules.

2.2 Open vSwitch
Open vSwitch(OVS) is one of the most popular software

switches. It provides multi-layer flow tables and standard
management interfaces to handle network packets efficiently.
In addition, it supports diverse management protocols, such
as NetFlow [8], sFlow [12] and IPFIX [5]. It has been in-
cluded in some open-source Linux operating systems, adopted
as a switch of the hypervisor for some virtual machines [15].
It is also used in various open-source projects such as Open-
Stack [10] and Docker [2].

OVS also consists of two main components; (i) ovs-vswitchd
and (ii) kernel datapath module. We explain how these two
components manage flow rules and handle network packets
with those rules. When a new flow rule is inserted in OVS,
the rule parser in ovs-vswitchd parses user’s input. After
parsing, the flow information is saved flow-tables of user-
space at first. When a new packet (or a flow) arrives in
OVS, OVS searches kernel flow-tables at first. If a matched
flow rule is not found, OVS sends a message to the user-
space module. If matched flows exist in the user-space table,
OVS copies the flow rule information such as match field and
actions field from the user-space to the kernel-space flow-
tables. After copying, the packet (or the flow) is processed
in the kernel-space. If OVS can find a matched flow in the
kernel flow-tables, OVS updates statistic information and
executes actions [11].

Kernel module

Userspace daemon

Flow table UNISAFE
Security functions

UNISAFE
Alert!

UNISAFE Main

init

Private
channel

clean
up

Identifier
handler

Action : sec_xxx
Hash table

Data

1
14

ID
20

28

Flow

Match

Stat

Actions

Flow

Match

Stat

Actions

Flow

Match

Stat

Actions
Detection logic

 …

init clean up

Userspace
Kernelspace

Flow table

Flow

Match

Stat

Actions

Flow

Match

Stat

Actions

Flow

Match

Stat

Actions

co
py

 a
ct

io
ns

Insert rulesRule parser

Private channel
for UNISAFE

Ad
di

tio
na

l a
rg

um
en

ts

Data
structure

Figure 1: Overall Architecture of Unisafe. After a flow rule
is matched, the identifier handler calls a proper security ac-
tion according to the action field of the matched rule. Each
security action in Unisafe is named as sec xxx.

3. DESIGN
The main purpose of Unisafe is to build a flexible and

security-enhanced data plane by adding diverse security func-
tions to a software switch. To achieve this purpose, we de-
vise Unisafe as a union of new security actions for software
switches. These security actions can be used similar with
other OpenFlow actions (e.g., output, flood, drop) and
even make an action set clustering multiple actions. In this
section, we present the overall design philosophy of Unisafe
at first, and then we describe each component of Unisafe
in detail.

3.1 Overall Design
As illustrated in Figure 1, Unisafe employs two core mod-

ules: i) Unisafe Main and ii) Security actions, and they are
located in the kernel-space of software switches for provid-
ing diverse security services. Another module of Unisafe
is called a private channel, which transmits additional argu-
ments from the user-space to the core modules in the kernel-
space.

When a user installs a new flow rule, it is stored in the
user-space at first, and then copied to the kernel-space when
a matched flow arrives at the switch. If a flow rule has long
arguments, Unisafe copies them to the kernel-space directly
rather than the user-space through the private channel to
reduce processing overhead. When a Unisafe flow rule,
which is a flow rule having Unisafe actions, is matched to
incoming flows, Unisafe sends this flow information and
arguments to the Unisafe Main module in order to provide
desired security services located in the security functions set
module.

3.2 UNISAFE Main
The Unisafe main module initializes or cleans up Unisafe

instances when a software switch is launched or terminated.
It also contains an identifier handler so that the software
switch forwards received packets to a proper security ac-
tion according to Unisafe actions described in matched flow
rules. In addition, this module has a private channel, which
supports direct communication between the user-space and
the kernel-space, to transmit arguments to security actions.

Identifier Handler: Unisafe assigns a unique identifier
to each Unisafe action, and thus, a user (or an application)
can inform a desired security service to Unisafe by spec-

14

ifying a corresponding identifier in the action field of flow
rules. When a received flow is matched to a Unisafe flow
rule, the flow information is forwarded to an identifier han-
dler submodule rather than security actions directly. Then,
the handler submodule forwards the information and argu-
ments to desired security actions.

The reason why Unisafe adopts this design is for enhanc-
ing programmability that is not supported by other hard-
ware switches. Therefore, a developer can simply add a new
security action by registering its identifier and source code
files at the Unisafe main.

Private Channel: Most of actions in a software switch
require additional arguments that describe how to handle
packets. Those arguments are copied from the user-space to
the kernel-space when a target packet arrives at a switch.
However, if the length of arguments is too long, followed
packets would be delayed since the copy process requires
a notable processing time. This can be quite critical for
actions which have more complicated arguments such as an
IDS or an IPS.

To resolve this issue, Unisafe provides an alternative way
to copy arguments. A private channel directly connects the
user-space daemon with the Unisafe main module in the
kernel-space, hence some Unisafe actions can receive their
arguments through the private channel instantly before a
new packet arrives. We describe an example case of using
the private channel in Section 4.1.

3.3 Security Action Set
Unisafe manages security actions according to their be-

haviors. Each action, which is written as sec xxx in Fig-
ure 1, includes a detection logic and data structures that are
managed by a hash table. The detection logic, as its name
implies, detects a specific attack using status information
of packets, and this information is stored in data structures
separately. When a packet is passed to a security action, it
looks up the hash table and updates related status informa-
tion so that the detection logic finds a violation (i.e., attack)
and alerts to a user if detected.

Data Structure: Each security action manages addi-
tional data structures to store data such as statistics infor-
mation, policies, or rules to provide continuous and consis-
tent security services. These data are handled by the hash
table which the key of is a cluster ID. This is different with
the above action identifier. It is used for action clustering
which is described at the next section. Using these data,
security actions can check security violations and sends an
alert message to a user if Unisafe detects any violation.

3.4 Action Clustering
The other attractive functionality of Unisafe is action

clustering. It logically integrates multiple Unisafe actions
into a single action so that Unisafe can check different flows
synthetically without installing additional flow rules. There-
fore, the action clustering allows a user to employ compre-
hensive security policy and even conserve system resources.

Unisafe uses a cluster ID of Unisafe actions in each flow
rule to notice which Unisafe actions are logically integrated
into a comprehensive action. When a user assigns an equal
cluster ID to several Unisafe actions, they share the same
policies, status, or statistics information to verify a security
violation inclusively. The cluster IDs are managed by a hash
table in each Unisafe action, thus, Unisafe refers a cluster

sec_dos

sec_scan

sec_dpi

Flow table

F sec_scan (id = 2, …),
sec_dpi (id = 1, …)

sec_scan (id = 1, …)E
sec_dpi (id = 1, …)

Actions

C
B

sec_dos (id = 1, …)

Match

sec_dos (id = 2, …)
A

D

sec_dos (id = 1, …)

‘DoS status’ for ID 1

‘DoS status’ for ID 2

‘DPI rules’ for ID 1

‘Scan status’ for ID 1

‘Scan status’ for ID 2

Figure 2: Example of Action Clustering. Multiple flows
having the same cluster ID can share one Unisafe action.

ID after calling a proper security action according to a type
of Unisafe action. Therefore, two flow rules which have
the same cluster ID are grouped only if they have the same
Unisafe action.

Figure 2 describes an example of the action clustering.
The first three rules have the same Unisafe action but dif-
ferent cluster IDs. Since Unisafe clusters separated actions
according to their cluster IDs, Match A refers different sta-
tus data with Match B but the same one with Match C.
The next two rules have the same cluster ID but different
Unisafe actions. This implies that there is no correlation
between Match D and E, so they are managed separately.
The last rule is a complicated example. One Unisafe action
of Match F (i.e., sec dpi) is clustered with Match D since
they have the same cluster ID, but the other (i.e., sec scan)
does not compose any cluster with anyone since there is no
equal cluster ID for that security action.

4. IMPLEMENTATION
We have implemented Unisafe in the Open vSwitch ver-

sion 2.4.90. At first, we have modified ovs/lib/ofp-actions so
that a user can install Unisafe flow rules into OVS through
ovs-ofctl or ovs-dpctl. We designate the form of Unisafe
actions as sec name(args), which means that a Unisafe
action is identified as name and has arg as dedicated argu-
ments to each Unisafe action. For instance, sec dpi(rules)
denotes that a DPI action receives a rule file which is de-
scription for what it detects. Each Unisafe flow rule has a
cluster ID that is used for action clustering. If a user does
not set a cluster ID in a flow rule, it is filled with a random
unique number.

Next, we have modified some parts in ovs/datpath to im-
plement the Unisafe main and substantive security func-
tions. Furthermore, we also have modified ovs/ofproto/ofproto-
dpif-xlate to copy Unisafe actions from the user-space to
the kernel-space. Regardless of that, the private channel
is implemented additionally using Netlink [4] at both the
user-space and the kernel-space.

4.1 Example UNISAFE Security Actions
We have implemented three security actions for Unisafe;

DoS detector, Scan detector, and Deep Packet Inspection(DPI).
DoS detector observes the bandwidth usage of flows by
counting flow bytes. Whenever a packet arrives, DoS detec-
tor stores packet bytes accumulatively and a current time
in each data structure based on the cluster ID of Unisafe
flow rules, supporting the action clustering. If the band-
width of matched flows exceeds a given Mbps(Megabits per
second), which is an argument defined by a user, then the

15

action notifies the user of detecting a DoS attack.
Scan detector counts the number of activated TCP/UDP

ports and decides a port scanning attack if the number of
activated ports is larger than a given threshold during a time
interval. For every incoming packets, Scan detector stores
described port numbers and timestamps in data structures
according to cluster IDs and deletes outdated information.
If the action regards a network is under a port scanning
attack, then it alerts a user.

Deep Packet Inspection inspects a packet payload to
find specific patterns. Those patterns are described in a
rule file by a user, so DPI accepts the path of the rule file as
an argument and stores rule information in data structures.
DPI uses Boyer-Moor algorithm [1] for the pattern match-
ing process and alerts a user if a packet has any specified
pattern.

Moreover, DPI is a good example of why the private chan-
nel is needed. Most of cases, the size of patter information
is large enough to affect performance when it is copied to
the kernel-space after arriving packets. However, Unisafe
can process packets immediately without any delay on other
works since the private channel copies arguments instantly
after installing a flow rule.

5. USAGE SCENARIO
In this section, we present several example usage scenarios

to demonstrate how to apply Unisafe with OVS. Since the
basic usage of Unisafe is not different with other OVS ac-
tions, a user can easily combine Unisafe actions with other
OVS actions.

5.1 Example Usage Scenarios
Case 1: security service chain
A service chain allows a switch to perform a set of actions

sequentially. For instance, a user who wants to modify a
source IP address and forward it can write the action field
of a flow rule as below.

• actions=mod nw src(...),output:x

Similarly, Unisafe supports the chaining of security ac-
tions, so if a user wants to make a service chain ‘DoS detector
→ DPI’, then an action field can be

• actions=sec dos(...),sec dpi(...)

Thus, matched packets are processed in DoS detector first
and then DPI. When DPI should be processed before DoS
detector, the user simply changes the order of the chain.

Case 2: run actions additionally under the specific
condition

We assume that a simple case that all flows are inves-
tigated by DoS detector while TCP flows are additionally
inspected by DPI. Intuitively, those functionalities are rep-
resented by two flow rules: actions=sec dos(...) and ac-
tions=sec dos(...),sec dpi(...). However, they induces inac-
curate functionality because Unisafe creates independent
DoS detector instances which monitor flows separately ac-
cording to whether they are TCP flows or not. However,
Unisafe can solve this problem with the action clustering,
defining flow rules as follows.

• priority=10000, ,actions=sec dos(id=10, ...)

• priority=10001, dl type=ip, nw proto=tcp,
actions=sec dos(id=10, ...),sec dpi(...)

Figure 3: A OVS multiple flow table example for monitoring
every packet.

Table 0:
Firewall

Table 10:
DoS

detecotor
(sec_dos)

Table 20:
Forward

Table 11:
Scan
detector
(sec_scan)

Table 12:
DPI
(sec_dpi)

Figure 4: The example of the complex service chain.

Flows are matched to the first rule if they are not TCP flows,
otherwise matched to the second rule. Since DoS detectors
in both rule have the same cluster ID id=10, they are clus-
tered and detect a DoS attack compositely while DPI still
inspects only TCP flows.

Case 3: monitor every packet, not per flow
Due to the security service chaining and the action clus-

tering, Unisafe provides simple but strong security services
to specific flows. However, if a user wants to verify all flows
using Unisafe with different actions, how can the user write
flow rules? Should the user write flow rules for all possible
cases?

To address this problem, a user can apply the other OVS
action, goto_table. OVS provides multi-layer flow tables,
which allow a user to consist layered switching steps. There-
fore, the user can assign one flow table only for DoS detec-
tor instead of writing all possible flow rules, compressing the
number of flow rules in a switch.

Figure 3 describes an example of multi-layer flow tables.
The first flow rule matches all packets and executes DoS
detector. After that, it calls a goto_table action which is
displayed as resubmit in OVS and forwards packets to table
10. At table 10, OVS processes packets separately accord-
ing to flow rules in the table.

Case 4: complex service chain with multi-layer ta-
bles

Combining and applying above use-cases, we show a fea-
sible use-case using Unisafe. Figure 4 illustrates the struc-
ture of this.

In this example, we compose a security service chain using
several multi-layer flow tables, and each table has the re-
sponsibility for one function: Firewall (a set of forward and
drop actions), DoS detector(sec dos), Scan detector(sec scan)
and DPI(sec dpi). When packets arrive at this switch, the
Firewall table examines all packets at first and forwards it
to the DoS detector table using the goto_table. Next, the
DoS detector table checks a bandwidth about all packets us-
ing the action clustering and sends packets to the Scan
detector table, the DPI table or the Forward table accord-
ing to defined rules. The Scan detector table detects port
scanning attacks (it there are) and relays packets to the DPI
table. The DPI table inspects packets and forwards them to
the Forward table. Finally, the Forward table is in charge of
forwarding packets which is considered as valid packets by
these service chain.

As seen from the above, Unisafe is incredibly flexible,
easy to use, and can be applied even to complex security

16

(a) Alert message example of DPI

(b) Alert message example of DoS Detector

(c) Alert message example of Scan Detector
Figure 5: An examples of alert messages. When security
violations are detected, Unisafe alerts with the cluster ID
and detail information.

Bandwidth(Mbps)
110 50 100 500 1000

T
h
ro

u
g
h
p
u
t(

%
)

0

10

20

30

40

50

60

70

80

90

100

110
Throughput

forwarding
dos
scan1
scan5
dpi100
dpi500
dpi1000

Figure 6: Throughput of Unisafe

Latency(msec)
0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

C
D

F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Latency CDF

forwarding
dos
scan
dpi100
dpi500
dpi1000

Figure 7: Latency of Unisafe

systems. To build those systems without Unisafe, a net-
work requires other security applications and complicated
configurations, raising additional operation costs. Whereas,
Unisafe can be instantly deployed to construct even com-
plex systems without any additional cost.

5.2 Example Detection Cases
Figure 5 shows example cases when Unisafe detects some

suspicious network flows. Unisafe generates alert messages
with an action name, ID, and detail message and values.
Currently, Unisafe only displays alert messages in this pro-
totype, but we will add much more interesting functions in
the near future.

6. EVALUATION
In this section, we present some performance measure-

ment our devised system to verify feasibility and efficiency
of Unisafe. We have tested Unisafe at a test server which
has Intel I7-4790 3.6GHz, 16Gb, and Realtek RTL 8169 PCI

Gigabit Ethernet controllers. Using this system, we evaluate
the throughput and the latency of three prototype Unisafe
actions: DoS detector, Scan detector, and DPI.

6.1 Throughput
To verify how Unisafe affects the packet processing of

software switches, we firstly evaluate the throughput of three
prototype Unisafe actions by connecting two hosts to Unisafe
and sending TCP packets from one host to the other. We
record 100,000 random TCP packets and vary a bandwidth
up to 1000Mbps using tcpreplay. We also perform the same
measurement for a simple forwarding action (i.e., OVS with-
out Unisafe) to compare with each Unisafe action.

Figure 6 describes the measured throughput of each proto-
type Unisafe action. The red line with the cross dot means
a simple forwarding for comparing other actions. It shows
almost 70% throughput when a bandwidth is 1000Mbps.
The result of DoS detector which has the green line with
the ? dot follows the simple forwarding even if through-
put is just dropped at the 1000Mbps point. However, other
actions fall short of the simple forwarding and DoS detec-
tor. The throughput of Scan detector whose time interval
is 1sec(the blue line with the 4 dot) is already under 50%
at the 500Mbps point. The other scan detector that a time
interval is 5sec(the yellow line with the 5 dot) is under 50%
at the 100Mbps point. DPI with 100, 500, 1000 rules(each,
the cyan line with the 2 dot, the magenta line with the ©
dot, and the black line with the 3 dot) are similar with Scan
detectors. Even if they might keep acceptable throughput
before the 100Mbps point, they are also decreased rapidly
after the 500Mbps point.

6.2 Latency
Next, we evaluate the latency of Unisafe actions using

a ping message. We measure round-trip times (RTTs) by
sending a ping message from one host to the other in 100
times, and calculate the average of them as the latency of
each Unisafe action, omitting the smallest and the largest
RTT value.

Figure 7 illustrates the measured latency, and the mean-
ing of each line is equal to the throughput result of Figure 6.
We measure the simple forwarding again for comparing with
others. 90% of packets are processed within 0.35ms. The la-
tency of DoS detector is similar with the simple forwarding
alike the throughput, but the latency of DPIs are delayed
according to the number of rules. However, the delay time
may be acceptable compared with throughput decline. Scan
detector also shows reasonable result. We assume Scan de-
tector observes 5000 ports when we measure latency, but it
processes every packet within almost 0.45ms.

6.3 Discussion
Unfortunately, the throughput cannot show competent re-

sults except DoS detector. In comparison with through-
put of the simple forwarding at the 1000mbps point, the
throughput of DoS detector shows 94% of the simple for-
warding, the throughput of Scan detector with 1sec and
5sec time interval shows 30% and 29%, and the through-
put of DPI with 100, 500 and 1000 rules shows 40%, 15%
and 8% levels.

However, the latency might be considered relatively rea-
sonable. The latency gap between the best case(0.25ms of
DoS detector) and the worst case(0.55ms of DPI 1000rules)

17

is only 0.30ms.
Even if it may not be enough to deploy Unisafe in busy

and huge network environments for now, we think that it
may be enough for small networks because it is fine before
100Mbps point.

Note that Unisafe actions have NOT been optimized yet,
and we only show the concept and possibility of Unisafe
in this paper. However, we are under the improvement of
performance, so we believe that Unisafe will show the rea-
sonable performance as much as to be able to deploy in a
real network topology soon.

7. RELATED WORK
Avant-guard[13] has proposed a secure OpenFlow switch

architecture. It has solved the scalability challenge and the
responsiveness using the connection migration and the actu-
ating triggers. It can protect DDoS attack, Scanning attack,
and other triggerable intrusion. However, it is not flexible as
much as Unisafe because it can only protect specific attacks
and it lacks programmability compared with Unisafe.

Mekky et al.[7] have proposed an extended SDN architec-
ture that enables a fast customized packet handling. For
this work, they have introduced App table which contains
data-plane application information. However, due to App
table, packets have to be matched more than two times,
thus it decreases overall performance. However, Unisafe
actions are executed after matching immediately, it does not
need additional costs. In addition, they have implemented
a prototype using OVS, but it runs at the user-space while
Unisafe runs at the kernel-space which enables much faster
packet processing.

OFX [14] is an OpenFlow extension for switch-level se-
curity applications. Previous approaches which try to add
security function into SDN environments have implemented
security applications at SDN controllers. They have shown
poor performance or poor deployability. To address this
problem, OFX has been suggested as a framework which
enables installing security modules into switches. However,
it relies on OpenFlow and an OpenFlow controller, hence it
cannot run alone.

In addition, all researches mentioned above might not
be easy and convenient to make service chains as much as
Unisafe and might difficult to establish complex policies
but Unisafe can do it easily thanks to the clustering.

8. CONCLUSION
In this paper, we describe the design and implementation

of Unisafe which is a union of security actions for soft-
ware switches. Unisafe enables software switches to easily
provide security services without additional security devices
or applications. As an example of Unisafe, we implement
three Unisafe actions: DoS detector, Scan detector and
Deep Packet Inspection, and we evaluate them. Since they
are not optimized yet, the throughput degradation is a little
big compared with a simple forwarding except DoS detec-
tor. However, we believe that Unisafe has the possibility to
make networks more secure. We will improve and develop
Unisafe continuously and add several new actions such as
Anomaly detector or Session management as future works.

9. ACKNOWLEDGEMENT
This work was supported by Institute for Information &

communications Technology Promotion(IITP) grant funded

by the Korea government(MSIP) (No. B0126-15-1026, De-
velopment of Core Technologies for SDN-based Moving Tar-
get Defense)

10. REFERENCES
[1] R. S. Boyer and J. S. Moore. A fast string searching

algorithm. Commun. ACM, 20(10):762–772, Oct. 1977.

[2] Docker. Open-source project that automates the
deployment of applications inside software containers.
https://www.docker.com/.

[3] M. Honda, F. Huici, G. Lettieri, and L. Rizzo.
mswitch: A highly-scalable, modular software switch.
In Proceedings of the 1st ACM SIGCOMM Symposium
on Software Defined Networking Research, SOSR ’15,
pages 1:1–1:13, New York, NY, USA, 2015. ACM.

[4] IETF. RFC3549, Linux Netlink as an IP Services
Protocol. http://www.ietf.org/rfc/rfc3549.txt.

[5] IPFIX. IP Flow Information Export.
https://tools.ietf.org/html/rfc7011.

[6] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner. OpenFlow: enabling innovation in campus
networks. In Proceedings of ACM SIGCOMM
Computer Communication Review, April 2008.

[7] H. Mekky, F. Hao, S. Mukherjee, Z.-L. Zhang, and
T. Lakshman. Application-aware data plane processing
in sdn. In Proceedings of the Third Workshop on Hot
Topics in Software Defined Networking, HotSDN ’14,
pages 13–18, New York, NY, USA, 2014. ACM.

[8] NetFlow. Cisco IOS NetFlow.
http://www.cisco.com/c/en/us/products/
ios-nx-os-software/ios-netflow/index.html.

[9] Open vSwitch. An Open Virtual Switch.
http://openvswitch.org/.

[10] OpenStack. Open source software for creating private
and public clouds. https://www.openstack.org/.

[11] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou,
J. Rajahalme, J. Gross, A. Wang, J. Stringer,
P. Shelar, K. Amidon, and M. Casado. The design and
implementation of open vswitch. In 12th USENIX
Symposium on Networked Systems Design and
Implementation (NSDI 15), pages 117–130, Oakland,
CA, May 2015. USENIX Association.

[12] sFlow. sFlow that an industry standard technology for
monitoring high speed switched networks.
http://www.sflow.org/.

[13] S. Shin, V. Yegneswaran, P. Porras, and G. Gu.
Avant-guard: Scalable and vigilant switch flow
management in software-defined networks. In
Proceedings of the 20th ACM Conference on Computer
and Communications Security (CCSâĂŹ13),
November 2013.

[14] J. Sonchack, A. J. Aviv, E. Keller, and J. M. Smith.
Poster: Ofx: Enabling openflow extensions for
switch-level security applications. In Proceedings of the
22Nd ACM SIGSAC Conference on Computer and
Communications Security, CCS ’15, pages 1678–1680,
New York, NY, USA, 2015. ACM.

[15] Xen. Xen Wiki - Networking. http://wiki.xenproject.
org/wiki/Xen Networking#Open vSwitch.

18

