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Abstract
Network devices generally handle traffic with predefined policies that describe 
the operation of packets. Since these policies explain network operation, the num-
ber of policies in network devices naturally increases as the scale of a network. 
Unfortunately, processing a large number of policies may lead to performance 
loss; Although many policies can be stored in memory, a network processor in a 
network device can only handle a limited number of policies at once so that the 
policies should be divided and processed into several groups. Thus, the processing 
time for one packet will be delayed, and it can fill up an input buffer of the device 
and drop packets. However, improving a processor that supports large capacity is 
not an efficient way because it also increases the cost of the processor. To address 
these challenges, we propose a hardware architecture for network processors called 
Mobius. It allows a processor to re-process packets n more times with different poli-
cies by utilizing the idle resources of the processor caused by the propagation time 
of packets on a wire. Consequently, Mobius extends the capacity of the processor at 
a low-cost so that more policies can be processed for packets without performance 
loss. We implement the prototype of Mobius using NetFPGA-SUME and our evalu-
ation demonstrates that Mobius achieves a line-rate throughput with a tiny latency 
overhead. A comparison with other network processor models shows that Mobius 
exhibits a similar performance but is more economical.
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1  Introduction

In these days, it is commonly required for network devices, such as switches, 
routers and even security appliance, to process large amounts of network packets 
in near real-time. With the advent of diverse new network required services (e.g., 
IoT and 5G), each network device is enforced to handle more than gigabits-per-
second with minimal loss. Moreover, it is also necessary for network devices to 
employ various sorts of network policies that represent a set of rules governing 
the behaviors of packets. For example, in an IoT network environment, we may 
need to enforce diverse different network policies to a network device to forward/
drop required packets to each IoT device. If the number of IoT devices is getting 
increased, the number of required network policies will be increased. In addition, 
it is well known that network devices should work with a large number of for-
warding entries or security rules to deal with a greater number of hosts in a data 
center [1–4].

As such, network devices need to process network packets by applying many 
diverse network policies. In this situation, we raise the following research ques-
tion; Is it possible for a network device to accommodate many different network 
policies all without performance loss? In a network device, no matter how many 
policies are stored in the device, the number of policies that a network proces-
sor can index and process in real-time is limited [5–7]. Thus, the excess of the 
network device capacity should be omitted or processed in delaying packets in a 
buffer, resulting in performance degradation. For instance, we assume a network 
processor in a network device, storing 1000 forwarding entries in memory, can 
only handle up to 100 entries in real-time. Then, the policies should be handled 
into several groups (i.e., 10 times, 100 per each) and the processing time will be 
delayed so that packets are stacked (and could be fulled) in the buffer. What is 
worse, this problem is much more serious if a network device needs to access the 
payload of network packets (e.g., network intrusion detection system) [8, 9].

To address this problem, we may be able to simply extend/improve a packet 
handling processor to support a large number of policies in real-time. However, 
it is not a satisfactory solution because it sometimes requires much more hard-
ware resources (i.e., cost-inefficient). Thus, we need to find an alternative method 
to increase the capability of a packet handling processor effectively. Here, we 
will consider utilizing the processor’s idle or potential resources, like applying 
Hyper-threading technology [10, 11]; A packet is transferred as a bitstream of 
digital signals on a wire, and a network interface takes some time to receive them, 
though it is a short time at nanoseconds level, and the processor will be idle at 
that time. In this situation, sometimes packet buffering will happen when many 
packets come into a network device buffer. Here, if we can change the processing 
order of packets, we could process packets instead of keeping them in the buffer.

With this insight, we propose a novel hardware architecture called Mobius, 
which enables a network processor to re-process a packet n more times using 
the idle resource of the processor. Mobius consists of two main features: (1) a 
dynamic policy enforcement feature, which allows policies to be presented in 
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groups and conditionally switched with other policy groups for each processing 
round, and (2) a resubmitting feature, which returns a packet to the input buffer of 
the processor without packet loss by monitoring contention. By combining these 
two features so that changing policies per each loop, a network processor can pro-
vide more polices for packets without performance loss.

We implement a Mobius prototype system using NetFPGA-SUME [12, 13], and 
our evaluations show that the Mobius architecture supports line-rate throughput and 
a minimal overhead in latency close to that of the simple packet forwarding. In addi-
tion, when comparing it with other operational models, such as a large-scaled pro-
cessor (i.e., extended architecture) [14] or pipelining [15, 16], Mobius has similar 
performance but uses less hardware resources (i.e., higher cost-efficiency).

This paper is organized as follows. Section 2 shows the need for Mobius. Sec-
tion 3 presents the design principles of Mobius and Sect. 4 describes the implemen-
tation of Mobius. Section 5 evaluates the performance of Mobius and compares it 
to other operating network processor models. Finally, we discuss potential system 
limitations in Sect. 6 and related works in Sect. 7.

2 � Problem Statement

In this paper, we aim to develop a network processor architecture that handles a 
greater number of policies, while preserving performance and minimizing resource 
overhead. Here, we diagnosis the bottleneck point in an existing network processor 
and the challenges of possible solutions.

2.1 � Network Policy and Processor

Network devices generally handle traffic with predefined policies that describe the 
operation of packets. For example, the policies of a switch determine an output port 
for incoming packets, the policies of Deep Packet Inspector (DPI) mean a list of pat-
terns to match in packet payload; In these days, to handle various types of packets 
and protocols, network devices should inevitably manage a large number of poli-
cies. In other words, for every packet received, the network devices must search and 
process that amount of policies [1, 17–19]. To efficiently deal with this, most of net-
work devices equip a network processor (as known also packet processor), dedicated 
hardware specifically targeted at network processing. It allows the network device 
to process multiple policies at once for packets by utilizing parallelism of hardware, 
thus it is specialized in processing traffic at high speed for large amounts of policy 
[20, 21].

2.2 � Challenge of Network Processors in Processing Many Policies

However, even if a network processor concentrates on network processing, handling 
many policies is still a heavy burden affecting performance on a network device, 
since the capacity of the network processor is finite and limited [5–7]. Note that the 
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capacity in this context does not mean how many policies can be stored in a device 
(i.e., memory), but means the internal processing capacity that can process policies 
simultaneously and the size of capacity is usually smaller than the memory. There-
fore, even if a lot of policies are prepared in memory, the number of activated poli-
cies working on the processor at a time is limited so that the many policies should 
be divided and processed into several groups for the capacity, and this can lead to 
processing delays and a decrease in throughput.

Figure  1 illustrates an example of this principle using NetFPGA-SUME [12, 
13] (The detailed environment is described in Sects. 4 and 5). In this example, the 
network device works as Deep Packet Inspection (DPI) so that it searches packet 
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payload with hundreds of patterns as its policy (Fig.  1a). However, its network pro-
cessor (i.e., string matcher) is assumed that can only match up to 100 patterns at 
each clock as its capacity. Here, we sent 64–1514 bytes packets at 10 Gbps speed to 
the device and measure the throughput by increasing the number of patterns from 
100 to 400; As seen in Fig.  1b, the line-rate throughput (i.e., 10 Gbps) is achieved 
within the processor’s capacity (i.e., 100 patterns), but degradation occurs in propor-
tion to the number of patterns from 200 patterns. The reason for this degradation 
is that the patterns exceeding the processor capacity (i.e., 100 patterns) should be 
divided and processed into two-four groups (100 × 2–4), thus each packet occupies 
the processor two-four more times than in processing 100 patterns. Figure 1c depicts 
these delays in processing 400 patterns for sequentially incoming packets; While 
Packet 1 (P1) is processed over a total of 4 clocks, Packet 2 (P2) waits without doing 
any work, and processing starts when P1 ends. If the following packets arrive faster 
than this delay time, they accumulate on the input queue during the preceding packet 
is processed, and loss will consequently occur for packets that exceed the queue’s 
capacity. Extending the input queue size just postpones the timing filling up the 
queue, so it can not be a fundamental solution to this problem.

2.3 � Possible Strategy

To address the throughput degradation due to the stretched delay for processing 
many policies, it is important to increase the capacity of the processor enough to 
deal with a lot of policies. Here, we review several hardware design approaches of 
network processors to support a greater number of policies.

Extended network processor A simple approach is designing an extended net-
work processor to handle the greater number of policies at once (i.e., a large-scaled 
network processor). As exampled in Fig. 2a, it matches a packet on all 400 policies 
at a single cycle, thus the following packet (P2, P3 and P4) is processed on time 
without delay. However, to make the network processor to handle more policies, the 
processor size itself and internal buses that deliver packets and policies to the pro-
cessor should be wider. Hence, this approach naturally increases the complexity of a 
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circuit and chip size on hardware, and it is difficult to extend the processor infinitely 
due to thelack at cost-efficiency. Considering the cost-efficiency is a serious issue in 
operating data centers [22] and we cannot ignore it, the extended processor may not 
be a sufficient solution.

In addition, since it handles whole policies at once, the branch of policies is not 
allowed. For instance, while policies should be provided hierarchically (e.g., First 
TCP → Next HTTP or FTP depending on a port address), the extended network 
processor is expected for one batch processing so that the policies must be divided 
into multiple cycles, i.e., causing the processing delay again. This means that the 
extended network processor design can only process a packet with a fixed policy 
set and it is not possible to provide a dynamic policy for the current processing 
condition.

Pipelining One of the possible approaches is processor pipelining, which is a 
popular hardware design model consisting of a set of processors connected in series 
in which the output of a precedent processor is the input of the next one [23, 24]. 
The pipelining technique distributes policies into n processors, and packets are pro-
cessed into stages of each processor per each clock as seen in Fig. 2b. It guarantees 
throughput and can provide different policy groups in the next stages depending on 
the outcome of the previous stage.

However, it permanently increases a total processing time (i.e., latency) as much 
as the length of the pipeline (e.g., in Fig. 2b, each packet takes 4 clocks to be pro-
cessed), and it may waste of resources when policies are not full in all processors 
in the pipe. For example, even if a packet needs only 100 patterns or the process-
ing is done halfway and no subsequent processing is necessary, the packet needs to 
go through all processor cores unnecessarily. Furthermore, it is also an expensive 
design as it should have n more processors for a single network device. Typically, 
a pipelining design takes more resources than running one batch at a time (i.e., an 
extended processor), since each stage is independent so that may require additional 
buffering and synchronization between the stages of the processors.

Software Another possible approach is to implement packet-processing in soft-
ware such as Software-Defined Networking (SDN) and Network Function Virtual-
ization (NFV) and many network processing have been already applying this method 
[25–27]. This approach can easily handle large numbers of policies with a very 
inexpensive way. However, software performance is limited, and the performance 
degrades exponentially with the number of policies. According to the feasible study 
of Yoon et  al. [28], the software-based approach suffers significant performance 
degradation of from several hundred Mbps to under 10-20 Mbps while security pro-
cessing, even the evaluation was performed on a many-core CPU.

2.4 � Our Approach

Summarize existing strategies, they are tradeoff for cost, performance, and opera-
tional flexibility. Thus, we conclude that we need an alternative architecture, which 
satisfies the following research challenges: 
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	C1.	 Increasing the number of policies while preserving performance.
	C2.	 Minimizing resource usage in hardware.
	C3.	 Enabling conditional statement .

To answer them, we have been inspired that transferring a packet as an electrical 
signal on a wire takes a certain amount of time and a processor may be idle dur-
ing that time. If we can utilize the idle resource to process packets, like Hyper-
threading technology [10, 11], a network processor can handle a packet one or 
more times by inserting the packets that have already been processed once to the 
idle times and operating again.

With this insight, we devise a hardware architecture for a network processor 
called Mobius; It consists of two features (1) a dynamic policy enforcement fea-
ture and (2) a resubmitting feature. They extend a network processor and act as 
if the processor can conduct loop and conditional statements in packet process-
ing. By combining these two functions, a packet that is already processed on a 
network processor can be resubmitting back to the processor again. As a result, 
the network processor can handle the packet n more times with different policies, 
and this utilizes the idle time latent in the processor, which can also minimize 
resource consumption on hardware. Also, its application provides various opera-
tion scenarios at the processor level.

Difference with the existing approach OpenFlow 1.1 or later [29] and P4 
[30], which are network dataplane description protocols/languages, define mul-
tiple lookup tables for policies in their specifications (e.g., goto_table instruction 
in OpenFlow, resubmit/recirculate instruction in P4). Therefore, most of control-
lers or compilers support the recirculation in their APIs [31, 31–33], and it seems 
that our approaches have already been formulated. However, the actual imple-
mentation on the datapath is mostly limited to software yet (e.g., Open vSwitch 
[25]).

Unfortunately, their implementation on hardware (i.e., network processor) is chal-
lenging due to the difficulty in handling the loop statement in hardware, so their 
implementations are based on software or often missing the multiple table lookup. 
In fact, it is well-known challenges [34–36], and many products of commercial ven-
dors omit the feature or provide it with software processing. For example, PicOS 
OVS of PICA8 switches [37] provides the goto_table instruction with 253 tables in 
user mode (i.e., software path), but it has only table 0 in hardware and flows will be 
merged as a flow to hardware when configuring flows with different tables. Arista 
EOS [38] only supports OpenFlow 1.0 so that the goto_instruction is still unavail-
able. HPswitch [39] and Juniper switch OS juniper now supports OpenFlow 1.3.1, 
but the goto_table instruction is missing. Some Cisco devices [40] supports only a 
subset of OpenFlow 1.3 functions, but those cannot configure more than one Open-
Flow logical switch, i.e., resubmission is not allowed. Another method is to utilize 
Protocol-Independent Switch Architecture (PISA) which is a programmable switch 
architecture using P4 [4]. It consists of programmable match-action modules in 
pipelining of n-length. Therefore, it can accept the recirculation of the language by 
logical arrangement between modules, but essentially it does not deviate from the 
pipelining structure. Therefore, the research goal of this study can also be regarded 
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as equivalent to the first suggestion of the implementation for multi-table at the pro-
cessor level.

3 � Design

In this section, we present the design of Mobius, which is a new hardware archi-
tecture for more efficient and richer packet processing on network processors. This 
architecture is located around a network processor and allows a network device to 
handle loop and conditional processing for a greater number of policies with mini-
mal overhead.

Design consideration We mean that a network processor is hardware circuit on a 
network device (e.g., IC, SOC) that processes packets and decides packet behaviors 
based on policies. Also, a policy refer to a group of any designated rules determin-
ing how to handle incoming packets. For example, if a network processor works as 
a switch or a router, its policies mean forwarding entries. If a processor runs as DPI, 
the policies indicate a list of patterns to check.

3.1 � Overall Design

Figure 3 shows the overall design of Mobius and its workflow. This architecture con-
sists mainly of two features, dynamic policy enforcement and packet resubmitting. 
First, the dynamic policy enforcement feature allows packets to be processed by 
switching policies; When a packet is incoming to the device, an initial policy ID is 
assigned to a packet, and before being processed on a network processor, the packet 
requests the policy group for the ID, allowing the processor to fetch the active policy 
from the memory so that the packet is processed with the specific policy. Second, 
the resubmitting feature re-enters the packet already processed to the input queue 
with a next policy ID so that the packet can be re-processed with different policies 
by the processor one or more times.
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Combining these two features, Mobius allows a network processor to support a 
greater number of policies or branched policies by repeatedly re-processing a packet 
with different policies. For example, if a network processor is capable of inspecting 
a payload, it provides a common rule set in the first round but then inspects each 
packet with a specified rule set (e.g., an SQL injection-related set for HTTP packets, 
malware-related set for FTP packets) can be performed in each re-processing round.

3.2 � Dynamic Policy Enforcement

In order to enforce different policies for each packet per re-processing round, 
Mobius manages a policy memory which stores a set of policies by IDs, and its next 
policy IDs. It allows a network processor to change the active policy dynamically 
and provides a branch of the policy to be processed next, depending on whether 
the policy works or not. Figure 4 describes this operation in detail; When a packet 
arrives at the device, it first passes through the add initial policy ID module to assign 
the packet a policy ID which it is initially performed. The ID can be assigned using 
various criteria as to how the packet is classified, such as through source/destination 
IP addresses, protocol, or a source device type.

Before entering into a network processor, the packet requests the corresponding 
policy from the memory by the policy ID, and the requested policy is fetched to the 
active policy in the network processor. Here, some policies should track and keep 
current processing states for packet states (e.g., TCP session monitoring). Therefore, 
to ensure exclusive processing states between different policy IDs of traffic flows 
on changing active policies, the previously active policy is also returned and stored 
back into the memory, and the network processor can follow the changes being made 
for the packets continuously while handling other flows alternately. In the fetching 
and storing, the memory should be a dual-port that allows multiple reads or writes 
to occur at the same clock so that the fetching and storing are performed concur-
rently in a single clock cycle while ensuring consistency of policies. Otherwise, if 
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the memory is a single-port that allows only one read or one write at each clock, 
the fetching and storing should be performed over two clocks, i.e., storing the active 
policy back into the memory and fetching a new policy from the memory.

After processing the packet on the processor, the next policy ID which is to be 
fetched after resubmission is assigned to the packet from matched or mismatched 
fields in the policy memory, according to its matching condition whether the policy 
has been worked or not for this packet; If a policy is worked (e.g., matching tcp/ip 
address, or matching pattern in the payload), the ID specified in matched is assigned 
as the next policy ID, if not, an mismatched is assigned. A packet which has a next 
policy ID is pushed into the resubmit queue. Otherwise, it no longer requires further 
processing, the next ID field can be set to Out, then the packet will not receive a new 
ID and will enter the output queue immediately to be forwarded to the next hop. 
In addition, Drop, which means terminating current processing and discarding the 
packet, can also be assigned.

3.3 � Resubmitting Operation

The key challenge of the resubmit feature is to reprocess the packets without com-
promising performance and congestion with newly arriving packets. We drew inspi-
ration its solution from how a packet is delivered on a physical wire and handled on 
a network device. Figure 5 illustrates it. In a network, packetized data is delivered 
as a bitstream on a physical cable to the next device. When the next device receives 
the data, the network interface in the device receives the bitstream into several data 
chunks (words) of n-bit (e.g., if the size of the chunk is set to 64 bits, a 100 bytes 
packet (800 bits) is received in 13 chunks) [41, 42]. Here, forming the chunk of n-bit 
from the bitstream spends some clocks of the device due to the propagation time of 
the electrical signal on the wire, thus there are time gaps between the arrival of each 
chunk in which the processor is idle. For example, when a device runs at a 100 MHz 
clock rate, processes a packet into the chunks of 64-bit and has a current bandwidth 
of 1 Gbps. Sending 64 bits of bitstream on the 1 Gbps wire takes 64 ns (1 Gbps = 
1 ns/bit) and 64 ns is the equivalent of 7 clocks on the device (100 MHz = 10 ns/
clock). This means that the chunk is created every 7-clock per chunk, and there are 
idle for 6-clocks waiting for the next chunk.

The resubmit feature utilizes these idle clocks by inserting processed packets 
back to idle slots in the input queue. Figure 6 illustrates a detailed example and oper-
ation. In this figure, a chunk arrives at the device every four clocks, so there are 
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three idle clocks; A new chunk for an incoming packet is assigned a policy ID and 
will be entered to a network processor. After processing, the packet needs additional 
processing, the packet is pushed into the resubmit queue in chunks. The chunks in 
the resubmit queue enter the input queue under the control of the congestion control 
module which monitors a collision whether there is a chunk in the input queue. If a 
collision occurs due to new incoming chunks, the congestion control module puts 
the resubmitted chunks wait until the input queue is idle. If not, it pops a chunk from 
the resubmit queue into the input queue.

The maximum possible number of resubmissions for a packet is related to the 
device’s potential resources, especially the clock rate of a device; If the number of 
resubmissions exceeds the potential resources, more packets will enter the resub-
mit queue than leave (i.e., the resubmit queue is saturated), which will soon fill the 
queue and result in packet loss. The effective submission count (including the first 
submission) is related to current network bandwidth, which a network processor is 
currently processing (e.g., if packets come from multiple interfaces, the network 
bandwidth is equal to the sum of the bandwidth of each interface), the clock rate of 
the device, and the size of a chunk. With the bandwidth denoted as B, a clock rate as 
f and a chunk size as C, the number of submissions S(n) is

As shown in the equation, the number of submissions varies according to the current 
network bandwidth. Therefore, for consistent operation, the resubmission can be 
established by assuming the maximum bandwidth on a network as B and it derives 
the number of submissions when the device has maximum utilization. Instead, it is 
also possible to dynamically adjust the number of resubmission by monitoring cur-
rent bandwidth usage, e.g., when the current bandwidth is low, more resubmits can 
be performed.
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By combining the two processing structures, Mobius consequently allows a 
network processor to handle a packet n more times, and it applies the number of 
policies by n times. Therefore, the total number of policies can be increased to the 
policy capacity of the processor multiplied by the number of resubmissions. For 
example, if the capacity of a processor is 1,000, the number of polices can increase 
to 2,000 with two resubmissions. If the capacity of a processor is 5,000, the number 
of polices can grow to 20,000 with four resubmissions.

3.4 � Workflow

A generalization of packet processing with Mobius can be described in Fig.  7; 
Mobius can be regarded to provide a processor the loop and conditional statements. 
Its application allows a network processor not only to handle more polices by chang-
ing policies per each loop but also to provide various operation scenarios at the pro-
cessor level.

A greater number of policies The basic method is to increase the number of 
supported policies using the policy ID as a counter; Packets are initially assigned 
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with ID number 1, then its next ID is set to the current ID plus one (i.e., 2), and 
its next ID is set to 3, and so on. This policy chain consequently increases the total 
number of policies n-fold.

Conditional statement Another application is providing conditional processing 
by subdividing policy IDs into a binary tree scheme. Figure 8 shows the example 
of this, which provides exact policy for each protocol; the policies of ID 1-3 are 
used for determining protocols (e.g., policy 1 looks up TCP 80 port), and the policy 
10-11, 20 and 30 contain policies for each protocol, and they are arranged hierarchi-
cally according to matched/mismatched result. Hence, protocols are filtered by the 
elimination method so that detailed policies can be applied for each packet.

3.5 � Policy Configuration

To configure the policy memory and the initial policy allowing packets to be resub-
mitted, Mobius provides an application programming interface on host software as 
depicted in Fig.  9; The network device that equips Mobius receives configuration 
values from a host by reading registers on the host control register layer and update 
their memory and table if new values are written on the registers. The device driver 
deliverers these configuration values from the host to the network device, and an 
administrator can provide the values via two APIs mainly, setInit (packet, ID) to set 
the initial policy ID and setMemory (ID. [policy] , next_match, next_mismatch) 
to set the policy memory.

4 � Implementation

In order to validate the efficiency and feasibility of the Mobius design, we have 
implemented a prototype of Mobius using NetFPGA-SUME (Figure  10), a 
FPGA-based PCI Express board with four SFP+ 10 Gbps interfaces and a Xilinx 
Virtex-7 XC7V690T [12, 13]. This prototype was built on the reference NIC of 
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the NetFPGA-SUME project [44], which processes packets in chunks of 256-bit 
at a 160 MHz clock rate. The policy memory and the initial policy ID table are 
implemented using a dual-port Block-RAM (BRAM) and they are set to store 
65,535 entries in this prototype. The resubmit queue can hold up to 2000 bytes of 
byte stream. All FPGA codes are written in Verilog and synthesized with Xilinx 
Vivado. The device driver is extended based on the reference driver of NetFPGA-
SUME, and the configuration APIs are implemented in C with 500 LoC, and 
communicates with the driver via ioctl and NetLink protocol.

Network Device

Pkt. Processor

Active policy

Operation

Add Initial policy ID
Policy memory

Initial policy ID Table

Host control registers

Initial policy ID register Policy memory reigster

Host software

Device Driver

setInit(packet, ID) setMemory(ID, [policy], 
                    next_match, next_mismatch)

Fig. 9   Policy configuration

Fig. 10   NetFPGA-SUME board
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Target network processor In order to increase the practicality of the evaluation, 
we have implemented the simple string matcher of Sourdis et  al. [43] as seen in 
Figure 11a and used it as the target network processor in this prototype. The string 
matcher works on a state machine (i.e., automata), so it has a delay of 32-clock to 
process every 256-bit chunk input. Its policy memory stores a set of patterns as poli-
cies and the state transition of the automata for each policy ID. For the evaluation, 
the string matcher is limited to process 100 patterns at once. Consequently, our test 
network device which equips Mobius is implemented like Fig. 11b.

5 � Evaluation

The main points of our evaluation are: (1) to show the throughput and latency varia-
tions by the resubmit feature, and (2) to validate the improvement in network proces-
sor capability via Mobius.

5.1 � Resubmitting performance

We measure the throughput and latency variations by Mobius while changing the 
numbers of resubmissions. The measurements are performed on three machines 
that have Intel Xeon E5-2630 CPU and 64 GB of RAM. We install the NetFPGA-
SUME board on one of the machines to run Mobius, and the other machines have 
Intel X520 10GbE NICs packet as sender/receivers, which are connected to the 
NetFPGA-SUME machine with 10 Gbps. The patterns to be deployed on the string 
matcher are randomly collected from Snort 2.9.7 default rulesets.

Throughput For the throughput measurement, the sender machine generates 
packet bursts of different-sized packets (64, 128, 256, 512, 1024 and 1514 bytes) 
using an Intel DPDK-Pktgen [45] and sends them to the receiver machine. Figure 12a 
shows its result; the throughputs with up to four times of resubmission (i.e., 100 × 4 
patterns) remain constant close to simple forwarding. However, when the number of 
resubmissions exceeds this amount (i.e., 100 × 5, 6 and 8 patterns), an approximate 
20% performance degradation occurs for each excess. This result demonstrates that 
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the resubmit feature can be used without loss of throughput, as Equation 1 in the 
design section is satisfied ( S(n) = n ≤ ⌊160MHz∕10Gbps × 256bit⌋, n ≤ 4 ). In other 
words, it proves that additional processing during the idle clock periods is valid.

One interesting thing is that the throughput trend by resubmitting is different 
from a general throughput trend, which means that the throughput increases as the 
packet size increases and PPS (Packet-per-seconds) decreases.This is because the 
size of the resubmit queue is managed in size, not the number of packets. As the size 
of the queue is 2000 bytes, the packets of 64 bytes can be stored to 31 packets but 
the packets of 1514 bytes can be stored in only one packet. Therefore, the larger size 
of the packets is, the easier it is to overflow the queue (i.e., higher loss rate). This 
results in a slight decrease in throughput for increasing packet sizes.

Latency For the latency measurement, the sender machine sends 256-byte TCP 
packets via Nping [46] to the receiver, and we measure its Round-trip time (RTT). 
In each case, 100 measurements are taken, and the results are shown in the CDF 
graph in Fig.  12b; There is a slight increase in latency as the number of submis-
sions increases, and 32 resubmissions resulted in an average delay of about 10 us 
compared to simple forwarding. This result occurs because reprocessing must spend 
the fixed amount of clock for itself on each round, thus the overall latencies will 
increase in proportion to the resubmission times. To analyze it in more detail, the 
network processor (i.e., string matcher) has the delay of 32-clock to process a chunk 
once and it is about 200 ns in 160 MHz clock of NetFPGA-SUME. While resub-
mitting, a packet should go through the processor, suffering the 200 ns delay on 
every resubmission. Also, there are additional delays by the internal buffer or queue 
while resubmissions are performing. Hence, the packet has an accumulated delay of 
200+@ ns for each resubmission round and it is shown as the latency increase.

5.2 � Comparing with Alternatives

To validate the improvement for the network processor via Mobius, we compare 
Mobius to the alternative network processor models with extending our string 
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matcher, as follows: (1) A naive network processor, which is the most common case 
that simply runs for the specified processing. It is represented by a single string 
matcher for 100 patterns (Fig. 13a). (2) An extended network processor, which is 
scaled to handle the greater number of policies at once. This is modeled by string 
matching for 400 patterns (Fig.  13b). 3) A pipelined network processor, which 
supports more policies in staged procedure. We implement this model with four-
stage pipelined string matchers for 100 patterns (Fig. 13c). In other words, except 
for the simple network processor model, all models (including Mobius) can handle 
up to 400 patterns natively. All models are also implemented and evaluated with 
NetFPGA-SUME.

Throughput comparison We first compare throughput of them for 100 and 400 
patterns. The test environment is configured in the same manner as the throughput 
measurement above. Figure 14 shows its result. As shown in the graphs, the simple 
processor design suffers huge degradation for the 400 patterns. As we mention in 
Sect. 2, this is because the simple processor inevitably delays packets in the input 
queue since the processing time should be stretched 4 times to handle 400 patterns 
with the capacity of 100 patterns. Hence, large amounts of packets are dropped, 
resulting in significant throughput degradation. On the other hand, although the pro-
cessor capacity of Mobius is also for 100 patterns, Mobius can support 10 Gbps 
throughput for both 100 and 400 patterns the same as the extended and the pipelined 
processor. This result shows that Mobius has successfully increased the number of 
policies that can be supported, without scaling up the processor.

Latency comparison Next, we compare latency of each case. This evaluation 
is also performed in the same way as the previous method. Figure  15 shows the 
result. The extended processor shows minimal latency regardless of the number of 
patterns, and this is because it can handle up to 400 patterns within a single cycle, 
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thus latency is not variable. However, the pipelined processor always has a constant 
delay as it must pass through the stretched procedure all the time. Therefore, latency 
is always slower than others in any case even when a small number of patterns are 
required or the process is finished early (e.g., finds a match one in an early stage). On 
the other hand, Mobius and the simple processor increase latency in proportion to 
the number of policies actually used as they can finish the processing on the way if 
it does not require extra processing. Hence, for 100 patterns, the simple and Mobius 
models are a little faster than the pipelined model as they process at once while the 
pipelined model processes over four times. For 400 patterns, the simple and Mobius 
and pipelined models go through the same four processes, so the latency is almost 
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same. Namely, there is no wasted latency for a small number of patterns as opposed 
to the pipelining.

Resource and power consumption Next, we compare the resource usage which 
means the complexity and quantity of the circuits and is related to cost efficiency. 
The resource usage is evaluated by measuring the LUT usage in NetFPGA-SUME 
when implementing the processor models, and Fig 16a shows the results. Compared 
with the simple string matcher, Mobius has an approximately 7% resource overhead. 
However, the extended and pipeline models use more than twice more LUT than 
simple processor, meaning that they are much more expensive to implement. This 
result implies that the existing modles should pay more to support many policies, 
but Mobius can achieve these features with a lightweight design and without paying 
much of a price.

The tradeoff for Mobius, how Mobius supports the same number of polices with 
a quarter of resources than the extended and pipelined processors, is the clock con-
sumption. The circuit structure of the Mobius processor is essentially no different 
from a simple processor, but Mobius processes a packet four more times while the 
simple processor handles a packet one time. That is, Mobius maximizes the pro-
cessor utilization and takes up four times the clock, which is like accelerating the 
processor. Therefore, the hardware resources can be significantly reduced but allow-
ing greater amounts of policy to be handled. Implication of this is discussed in the 
discussion section (Sect. 6).

In terms of power consumption, as seen in Fig. 16b, although there are slight dif-
ferences, all models have similar power consumption levels at the 6-watt level. This 
is because the power consumption mainly comes from the network processor (i.e., 
string matcher); All operational models configured to process total 400 patterns (i.e., 
1) running a single processor 4 times, 2) placing 4 single processors, or 3) extend-
ing the processor by 4 times), thus each workload is almost same consequently. This 
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means that it has the only difference in power consumption per circuit size, and the 
overall power consumption converges almost equally.

Overall comparison In order to summarize the evaluations, the comparison with 
the alternative models can be organized in Table 1. All alternatives (i.e., extended 
processor, pipelined processor, and Mobius) can augment the number of polices. 
In terms of performance, the extended processor guarantees the best performance 
both throughput and latency in constant. The pipelined processor and Mobius also 
provide line-rate throughput but latency is ease than the extended model as it per-
manently increases latency. Whereas, Mobius only increases latency proportionally 
to the actual amount of policies or until processing is completed, so Mobius works 
more efficiently than the pipelined one. The power consumption is all similar. In 
terms of resources, the extended and pipeline processors need a lot of resources, but 
Mobius only requires similar amounts of resources to the simple processor. Lastly, 
although functionality is the part that is not quantitatively evaluated, as the extended 
processor handles all policy in a batch, it is difficult to change policies or suggest 
other conditions in the process. Hence, the functionality of the extended processor 
can be considered as low. Whereas, the pipelined design and Mobius enable the con-
ditional policy handling even during processing, so they can operate policies in a 
variety of ways, i.e., the functionality is high. Overall, we can see that Mobius is a 
balanced solution in many ways. Although Mobius limits the number of policies that 
can be increased depending on a device clock speed, we believe that Mobius has led 
to a sufficient increase in the number of policies with minimal cost.

6 � Discussion and Limitation

The evaluation demonstrates that Mobius successfully extends the capability of a 
network processor to support more policies without performance overhead. In par-
ticular, it uses fewer resources than other extended network processors or pipe-
line structures. Taking into consideration all of these results, we conclude that the 
Mobius approach that utilizes the idle resources in a network processor addresses 
the challenges presented in the motivation section. Also, as the difficulty of repeti-
tive processing of packets on hardware (e.g., Multi-tables or Goto instructions) is 

Table 1   Overall comparison of the network processor models

Improved things are marked as a bold style, same or similar things are marked as a typewriter-style

Category Simple Extended Pipelined Mobius

# of Policies Limited Augmentable Augmentable Augmentable
Throughput Low Best Best Best
Latency Proportional Best Low Proportional

Power Average Average Average Average

Resources (Price) Low High High Low
Functionality Incapable Incapable Capable Capable
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well known challenges [34–36], we believe that Mobius contributes to the functional 
aspects of network processors.

Mobius is considered as shifting an area-intensive design that takes up hardware 
resources (i.e., LUTs in FPGA) to a clockrate-intensive design; Since the area-inten-
sive consumes a fixed amount of hardware resources regardless of current system 
utilization, making it difficult to dynamically reuse the resources. On the other hand, 
the amount of clock spent on actual work is proportional to system utilization, thus 
the clockrate can be dynamically allocated, e.g., more clocks for one packet or a 
small number clocks for multiple packets depending on the current state of a system. 
Mobius takes advantage of this and can be considered as more efficient use of the 
clock as dynamic resources.

For this reason, a drawback of Mobius is naturally related to the clockrate of a 
device. If a device is tightly designed with a low-rate clock generator, there is little 
room for Mobius to work. As shown in the resource comparison result (Figure 16a), 
the LUT usage of Mobius is quarter than others, but the clock consumption is four 
times higher, i.e., to achieve efficient resubmission counts, a total available clock-
rate in a device must be supported by that amount. As another possibility, even if a 
network device has a low-rate clock generator, the principle of Mobius that provides 
more processing during idle time of a processor is still effective. Therefore, even 
if Mobius cannot increase the number of policies at full bandwidth (e.g., line-rate 
speed), Mobius can still improve the utilization of the processor when not all of the 
device’s bandwidth is being utilized.

Another disadvantage is that Mobius needs to modify a network processor for the 
dynamic policy enforcement feature. However, this modification may be not much 
overhead in our experience, since the architecture of Mobius is mainly designed 
around a network processor. When we applied Mobius to the string matcher of 
Sourdis et al. [43], only approximately 100 LoC of Verilog was modified in the mod-
ule. Although it is difficult to assess objectively due to many variables, we expect 
that this overhead is similar to the overhead in configuring pipelining.

Lastly, the current Mobius structure does not support prioritized rules in the 
resubmitting process, thus resubmitted packets are simply processed by first-in-
first-out (FIFO). We expect that Mobius can afford and support prioritized rules by 
extending the resubmit queue to a priority queue, as exampled in Fig. 17; The resub-
mit queue consists of two or more queues assigned different priorities, and each 
packet is enqueued to a different queue according to its priority. When the packets 
are put into the input queue, the packets in the queue with high priority are served 

Resubmit queue
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Fig. 17   Resubmit queue with priority queueing
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first. However, the priority queue can lead to side effects such as starvation for low 
priority packets, so a sophisticated scheduling theory is needed to service packets 
well like [47, 48]. We believe describing the detailed theoretical model is beyond 
the scope of this paper that suggests and designs the resubmit architecture, thus we 
leave this feature as our future work.

7 � Related Works

Network processor The state-of-the-art studies on network processors have usually 
focused on extending flexibility at high-performance.

The decent of virtualized environment (i.e., Software-defined Network (SDN) 
and Network function virtualization (NFV)) has exponentially boosted the number 
and complexity of network policies. However, most of studies focused on improving 
packet processing on software. Forwarding Metamorphosis [49] designed program-
mable network processor for SDN/OpenFlow. ClickNP [50] was an FPGA-accel-
erated platform to offload software logic for highly flexible and high-performance 
virtualized network functions. HALO [51] proposed a near-cache acceleration for 
the flow classification on software packet processing. Barach et al. [52] introduced 
Vector Packet Processing (VPP) for high-performance packet processing on soft-
ware router. Also, P4 [30] and FlowBlaze [53] introduced a programming interface 
to customize a network processor logic on a network demand.

Some studies have focused on provides advanced network applications at high-
performance such as cryptography (McLoone et  al. [54]), intrusion detection 
(GNORT [55], DPFEE [56]) or multimedia purpose (HASPC [57]).

As such, most studies on network processors have been focused on how to pro-
vide diverse network services at high-performance, but no studies have considered 
extensions to processor policy capability. In this regard, to the best of our knowl-
edge, our study is the first study on the policy scalability at the processor level, and 
we believe that we have presented a new perspective on network processor-related 
researches.

Policy management Rather the policy capability issue on network processors, 
it is well known that the importance of the policy management. Libra [17] points 
out the challenges in forwarding table management. Anteater [58] and VeriFlow 
[59] created a data plane verification tool to detect misconfigurations on forwarding 
tables. DPX [60] consolidated network services into a data plane, allowing network 
policies to be managed in a simplified manner.

8 � Conclusion

As a network processor has a limited capacity in processing many policies, the 
processor should divide and handle policies into several groups, and it raises per-
formance loss by the delays. In order to address this challenge, we have presented 
Mobius, a packet re-processing architecture for rich policy handling on the part of 
a network processor. It allows a network processor to handle packets one or more 
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times with different policies for each round without performance loss. Our evalu-
ation demonstrates that this approach has very low overhead both in terms of per-
formance and resources and is competitive to other models. As our future work, by 
improving the congestion control to monitor the complexity of a network, Mobius 
can dynamically provide different levels of policies based on the complexity, i.e., 
adaptive policies.
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