
Journal of Network and Systems Management (2021) 29:3
https://doi.org/10.1007/s10922-020-09568-3

Mobius: Packet Re‑processing Hardware Architecture
for Rich Policy Handling on a Network Processor

Taejune Park1 · Seungwon Shin2

Received: 19 May 2020 / Revised: 19 September 2020 / Accepted: 25 September 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Network devices generally handle traffic with predefined policies that describe
the operation of packets. Since these policies explain network operation, the num-
ber of policies in network devices naturally increases as the scale of a network.
Unfortunately, processing a large number of policies may lead to performance
loss; Although many policies can be stored in memory, a network processor in a
network device can only handle a limited number of policies at once so that the
policies should be divided and processed into several groups. Thus, the processing
time for one packet will be delayed, and it can fill up an input buffer of the device
and drop packets. However, improving a processor that supports large capacity is
not an efficient way because it also increases the cost of the processor. To address
these challenges, we propose a hardware architecture for network processors called
Mobius. It allows a processor to re-process packets n more times with different poli-
cies by utilizing the idle resources of the processor caused by the propagation time
of packets on a wire. Consequently, Mobius extends the capacity of the processor at
a low-cost so that more policies can be processed for packets without performance
loss. We implement the prototype of Mobius using NetFPGA-SUME and our evalu-
ation demonstrates that Mobius achieves a line-rate throughput with a tiny latency
overhead. A comparison with other network processor models shows that Mobius
exhibits a similar performance but is more economical.

Keywords  Network hardware · Policy management · Network processor · FPGA ·
Architecture

This work was supported by Institute of Civil Military Technology Cooperation Center (ICMTC)
funded by the Korea government (MOTIE & DAPA) [18-CM-SW-09], and Korea Electric Power
Corporation (Grant number:R18XA05).

 *	 Seungwon Shin
	 claude@kaist.ac.kr

Extended author information available on the last page of the article

	 Journal of Network and Systems Management (2021) 29:3

1 3

 3   Page 2 of 26

1  Introduction

In these days, it is commonly required for network devices, such as switches,
routers and even security appliance, to process large amounts of network packets
in near real-time. With the advent of diverse new network required services (e.g.,
IoT and 5G), each network device is enforced to handle more than gigabits-per-
second with minimal loss. Moreover, it is also necessary for network devices to
employ various sorts of network policies that represent a set of rules governing
the behaviors of packets. For example, in an IoT network environment, we may
need to enforce diverse different network policies to a network device to forward/
drop required packets to each IoT device. If the number of IoT devices is getting
increased, the number of required network policies will be increased. In addition,
it is well known that network devices should work with a large number of for-
warding entries or security rules to deal with a greater number of hosts in a data
center [1–4].

As such, network devices need to process network packets by applying many
diverse network policies. In this situation, we raise the following research ques-
tion; Is it possible for a network device to accommodate many different network
policies all without performance loss? In a network device, no matter how many
policies are stored in the device, the number of policies that a network proces-
sor can index and process in real-time is limited [5–7]. Thus, the excess of the
network device capacity should be omitted or processed in delaying packets in a
buffer, resulting in performance degradation. For instance, we assume a network
processor in a network device, storing 1000 forwarding entries in memory, can
only handle up to 100 entries in real-time. Then, the policies should be handled
into several groups (i.e., 10 times, 100 per each) and the processing time will be
delayed so that packets are stacked (and could be fulled) in the buffer. What is
worse, this problem is much more serious if a network device needs to access the
payload of network packets (e.g., network intrusion detection system) [8, 9].

To address this problem, we may be able to simply extend/improve a packet
handling processor to support a large number of policies in real-time. However,
it is not a satisfactory solution because it sometimes requires much more hard-
ware resources (i.e., cost-inefficient). Thus, we need to find an alternative method
to increase the capability of a packet handling processor effectively. Here, we
will consider utilizing the processor’s idle or potential resources, like applying
Hyper-threading technology [10, 11]; A packet is transferred as a bitstream of
digital signals on a wire, and a network interface takes some time to receive them,
though it is a short time at nanoseconds level, and the processor will be idle at
that time. In this situation, sometimes packet buffering will happen when many
packets come into a network device buffer. Here, if we can change the processing
order of packets, we could process packets instead of keeping them in the buffer.

With this insight, we propose a novel hardware architecture called Mobius,
which enables a network processor to re-process a packet n more times using
the idle resource of the processor. Mobius consists of two main features: (1) a
dynamic policy enforcement feature, which allows policies to be presented in

1 3

Journal of Network and Systems Management (2021) 29:3 	 Page 3 of 26  3

groups and conditionally switched with other policy groups for each processing
round, and (2) a resubmitting feature, which returns a packet to the input buffer of
the processor without packet loss by monitoring contention. By combining these
two features so that changing policies per each loop, a network processor can pro-
vide more polices for packets without performance loss.

We implement a Mobius prototype system using NetFPGA-SUME [12, 13], and
our evaluations show that the Mobius architecture supports line-rate throughput and
a minimal overhead in latency close to that of the simple packet forwarding. In addi-
tion, when comparing it with other operational models, such as a large-scaled pro-
cessor (i.e., extended architecture) [14] or pipelining [15, 16], Mobius has similar
performance but uses less hardware resources (i.e., higher cost-efficiency).

This paper is organized as follows. Section 2 shows the need for Mobius. Sec-
tion 3 presents the design principles of Mobius and Sect. 4 describes the implemen-
tation of Mobius. Section 5 evaluates the performance of Mobius and compares it
to other operating network processor models. Finally, we discuss potential system
limitations in Sect. 6 and related works in Sect. 7.

2 � Problem Statement

In this paper, we aim to develop a network processor architecture that handles a
greater number of policies, while preserving performance and minimizing resource
overhead. Here, we diagnosis the bottleneck point in an existing network processor
and the challenges of possible solutions.

2.1 � Network Policy and Processor

Network devices generally handle traffic with predefined policies that describe the
operation of packets. For example, the policies of a switch determine an output port
for incoming packets, the policies of Deep Packet Inspector (DPI) mean a list of pat-
terns to match in packet payload; In these days, to handle various types of packets
and protocols, network devices should inevitably manage a large number of poli-
cies. In other words, for every packet received, the network devices must search and
process that amount of policies [1, 17–19]. To efficiently deal with this, most of net-
work devices equip a network processor (as known also packet processor), dedicated
hardware specifically targeted at network processing. It allows the network device
to process multiple policies at once for packets by utilizing parallelism of hardware,
thus it is specialized in processing traffic at high speed for large amounts of policy
[20, 21].

2.2 � Challenge of Network Processors in Processing Many Policies

However, even if a network processor concentrates on network processing, handling
many policies is still a heavy burden affecting performance on a network device,
since the capacity of the network processor is finite and limited [5–7]. Note that the

	 Journal of Network and Systems Management (2021) 29:3

1 3

 3   Page 4 of 26

capacity in this context does not mean how many policies can be stored in a device
(i.e., memory), but means the internal processing capacity that can process policies
simultaneously and the size of capacity is usually smaller than the memory. There-
fore, even if a lot of policies are prepared in memory, the number of activated poli-
cies working on the processor at a time is limited so that the many policies should
be divided and processed into several groups for the capacity, and this can lead to
processing delays and a decrease in throughput.

Figure 1 illustrates an example of this principle using NetFPGA-SUME [12,
13] (The detailed environment is described in Sects. 4 and 5). In this example, the
network device works as Deep Packet Inspection (DPI) so that it searches packet

Network Device
(Payload Inspector)

Memory

Packet Processor (String matcher)

Pattern 1
Pattern 2
Pattern 3

Pattern 100

Match

Packet
in processing Active Patterns

Input QueueNew Packets

Drop{

Pattern 1-400

Fetch 100 pieces
per round

User policy (pattern)

Waiting for completing
the preceding packet

String matching
(100 patterns at once)

(a) Packet drop by queue delay

Packet size (bytes)
64 256 512 1024 1514

T
h

ro
u

g
h

p
u

t
(G

b
p

s)
2

4
6

8
10

11

Pattern 100
Pattern 100x2
Pattern 100x3
Pattern 100x4

(b) Throughput evaluation

Pkt. Processor (Standalone)

P1
Pattern
1-100

Pattern
101-200

1 2 3 4 5 6 7clk.

Pattern
201-300

Pattern
301-400

P1

P1

P1

P2

P2

P2

Pattern
1-100

Pattern
101-200

Pattern
201-300

(c) Processing sequence description

Fig. 1   Challenge on handle many policies with a network processor

1 3

Journal of Network and Systems Management (2021) 29:3 	 Page 5 of 26  3

payload with hundreds of patterns as its policy (Fig. 1a). However, its network pro-
cessor (i.e., string matcher) is assumed that can only match up to 100 patterns at
each clock as its capacity. Here, we sent 64–1514 bytes packets at 10 Gbps speed to
the device and measure the throughput by increasing the number of patterns from
100 to 400; As seen in Fig. 1b, the line-rate throughput (i.e., 10 Gbps) is achieved
within the processor’s capacity (i.e., 100 patterns), but degradation occurs in propor-
tion to the number of patterns from 200 patterns. The reason for this degradation
is that the patterns exceeding the processor capacity (i.e., 100 patterns) should be
divided and processed into two-four groups (100 × 2–4), thus each packet occupies
the processor two-four more times than in processing 100 patterns. Figure 1c depicts
these delays in processing 400 patterns for sequentially incoming packets; While
Packet 1 (P1) is processed over a total of 4 clocks, Packet 2 (P2) waits without doing
any work, and processing starts when P1 ends. If the following packets arrive faster
than this delay time, they accumulate on the input queue during the preceding packet
is processed, and loss will consequently occur for packets that exceed the queue’s
capacity. Extending the input queue size just postpones the timing filling up the
queue, so it can not be a fundamental solution to this problem.

2.3 � Possible Strategy

To address the throughput degradation due to the stretched delay for processing
many policies, it is important to increase the capacity of the processor enough to
deal with a lot of policies. Here, we review several hardware design approaches of
network processors to support a greater number of policies.

Extended network processor A simple approach is designing an extended net-
work processor to handle the greater number of policies at once (i.e., a large-scaled
network processor). As exampled in Fig. 2a, it matches a packet on all 400 policies
at a single cycle, thus the following packet (P2, P3 and P4) is processed on time
without delay. However, to make the network processor to handle more policies, the
processor size itself and internal buses that deliver packets and policies to the pro-
cessor should be wider. Hence, this approach naturally increases the complexity of a

Pkt. Processor (Extended)

P1 P2 P3 P4

P1 P2 P3 P4

P1 P2 P3 P4

P1 P2 P3 P4

Pattern
1-100
Pattern
101-200

1 2 3 4 5 6 7clk.

Pattern
201-300
Pattern
301-400

(a) Extended network processor

Pkt. Processor (Pipelined)

P1 P2 P3 P4

P1 P2 P3 P4

P1 P2 P3 P4

P1 P2 P3 P4

Pattern
1-100

Pattern
101-200

1 2 3 4 5 6 7clk.

Pattern
201-300

Pattern
301-400

(b) Pipelined network processor

Fig. 2   Processing sequence of possible strategy

	 Journal of Network and Systems Management (2021) 29:3

1 3

 3   Page 6 of 26

circuit and chip size on hardware, and it is difficult to extend the processor infinitely
due to thelack at cost-efficiency. Considering the cost-efficiency is a serious issue in
operating data centers [22] and we cannot ignore it, the extended processor may not
be a sufficient solution.

In addition, since it handles whole policies at once, the branch of policies is not
allowed. For instance, while policies should be provided hierarchically (e.g., First
TCP → Next HTTP or FTP depending on a port address), the extended network
processor is expected for one batch processing so that the policies must be divided
into multiple cycles, i.e., causing the processing delay again. This means that the
extended network processor design can only process a packet with a fixed policy
set and it is not possible to provide a dynamic policy for the current processing
condition.

Pipelining One of the possible approaches is processor pipelining, which is a
popular hardware design model consisting of a set of processors connected in series
in which the output of a precedent processor is the input of the next one [23, 24].
The pipelining technique distributes policies into n processors, and packets are pro-
cessed into stages of each processor per each clock as seen in Fig. 2b. It guarantees
throughput and can provide different policy groups in the next stages depending on
the outcome of the previous stage.

However, it permanently increases a total processing time (i.e., latency) as much
as the length of the pipeline (e.g., in Fig. 2b, each packet takes 4 clocks to be pro-
cessed), and it may waste of resources when policies are not full in all processors
in the pipe. For example, even if a packet needs only 100 patterns or the process-
ing is done halfway and no subsequent processing is necessary, the packet needs to
go through all processor cores unnecessarily. Furthermore, it is also an expensive
design as it should have n more processors for a single network device. Typically,
a pipelining design takes more resources than running one batch at a time (i.e., an
extended processor), since each stage is independent so that may require additional
buffering and synchronization between the stages of the processors.

Software Another possible approach is to implement packet-processing in soft-
ware such as Software-Defined Networking (SDN) and Network Function Virtual-
ization (NFV) and many network processing have been already applying this method
[25–27]. This approach can easily handle large numbers of policies with a very
inexpensive way. However, software performance is limited, and the performance
degrades exponentially with the number of policies. According to the feasible study
of Yoon et al. [28], the software-based approach suffers significant performance
degradation of from several hundred Mbps to under 10-20 Mbps while security pro-
cessing, even the evaluation was performed on a many-core CPU.

2.4 � Our Approach

Summarize existing strategies, they are tradeoff for cost, performance, and opera-
tional flexibility. Thus, we conclude that we need an alternative architecture, which
satisfies the following research challenges:

1 3

Journal of Network and Systems Management (2021) 29:3 	 Page 7 of 26  3

	C1.	 Increasing the number of policies while preserving performance.
	C2.	 Minimizing resource usage in hardware.
	C3.	 Enabling conditional statement .

To answer them, we have been inspired that transferring a packet as an electrical
signal on a wire takes a certain amount of time and a processor may be idle dur-
ing that time. If we can utilize the idle resource to process packets, like Hyper-
threading technology [10, 11], a network processor can handle a packet one or
more times by inserting the packets that have already been processed once to the
idle times and operating again.

With this insight, we devise a hardware architecture for a network processor
called Mobius; It consists of two features (1) a dynamic policy enforcement fea-
ture and (2) a resubmitting feature. They extend a network processor and act as
if the processor can conduct loop and conditional statements in packet process-
ing. By combining these two functions, a packet that is already processed on a
network processor can be resubmitting back to the processor again. As a result,
the network processor can handle the packet n more times with different policies,
and this utilizes the idle time latent in the processor, which can also minimize
resource consumption on hardware. Also, its application provides various opera-
tion scenarios at the processor level.

Difference with the existing approach OpenFlow 1.1 or later [29] and P4
[30], which are network dataplane description protocols/languages, define mul-
tiple lookup tables for policies in their specifications (e.g., goto_table instruction
in OpenFlow, resubmit/recirculate instruction in P4). Therefore, most of control-
lers or compilers support the recirculation in their APIs [31, 31–33], and it seems
that our approaches have already been formulated. However, the actual imple-
mentation on the datapath is mostly limited to software yet (e.g., Open vSwitch
[25]).

Unfortunately, their implementation on hardware (i.e., network processor) is chal-
lenging due to the difficulty in handling the loop statement in hardware, so their
implementations are based on software or often missing the multiple table lookup.
In fact, it is well-known challenges [34–36], and many products of commercial ven-
dors omit the feature or provide it with software processing. For example, PicOS
OVS of PICA8 switches [37] provides the goto_table instruction with 253 tables in
user mode (i.e., software path), but it has only table 0 in hardware and flows will be
merged as a flow to hardware when configuring flows with different tables. Arista
EOS [38] only supports OpenFlow 1.0 so that the goto_instruction is still unavail-
able. HPswitch [39] and Juniper switch OS juniper now supports OpenFlow 1.3.1,
but the goto_table instruction is missing. Some Cisco devices [40] supports only a
subset of OpenFlow 1.3 functions, but those cannot configure more than one Open-
Flow logical switch, i.e., resubmission is not allowed. Another method is to utilize
Protocol-Independent Switch Architecture (PISA) which is a programmable switch
architecture using P4 [4]. It consists of programmable match-action modules in
pipelining of n-length. Therefore, it can accept the recirculation of the language by
logical arrangement between modules, but essentially it does not deviate from the
pipelining structure. Therefore, the research goal of this study can also be regarded

	 Journal of Network and Systems Management (2021) 29:3

1 3

 3   Page 8 of 26

as equivalent to the first suggestion of the implementation for multi-table at the pro-
cessor level.

3 � Design

In this section, we present the design of Mobius, which is a new hardware archi-
tecture for more efficient and richer packet processing on network processors. This
architecture is located around a network processor and allows a network device to
handle loop and conditional processing for a greater number of policies with mini-
mal overhead.

Design consideration We mean that a network processor is hardware circuit on a
network device (e.g., IC, SOC) that processes packets and decides packet behaviors
based on policies. Also, a policy refer to a group of any designated rules determin-
ing how to handle incoming packets. For example, if a network processor works as
a switch or a router, its policies mean forwarding entries. If a processor runs as DPI,
the policies indicate a list of patterns to check.

3.1 � Overall Design

Figure 3 shows the overall design of Mobius and its workflow. This architecture con-
sists mainly of two features, dynamic policy enforcement and packet resubmitting.
First, the dynamic policy enforcement feature allows packets to be processed by
switching policies; When a packet is incoming to the device, an initial policy ID is
assigned to a packet, and before being processed on a network processor, the packet
requests the policy group for the ID, allowing the processor to fetch the active policy
from the memory so that the packet is processed with the specific policy. Second,
the resubmitting feature re-enters the packet already processed to the input queue
with a next policy ID so that the packet can be re-processed with different policies
by the processor one or more times.

Network Device

Input Queue

Intf.
Add

initial
policy ID

Pkt. Processor
(e.g., Switching, DPI)

Policy Memory

Active policy

Processing

Swap

G
et

 p
ol

ic
y

b
y

ID

Resubmit Queue

ResubmitCongestion
Control

Add
next

policy ID
Intf.

New Packet

Resubmitted Packet

Fig. 3   Overall design

1 3

Journal of Network and Systems Management (2021) 29:3 	 Page 9 of 26  3

Combining these two features, Mobius allows a network processor to support a
greater number of policies or branched policies by repeatedly re-processing a packet
with different policies. For example, if a network processor is capable of inspecting
a payload, it provides a common rule set in the first round but then inspects each
packet with a specified rule set (e.g., an SQL injection-related set for HTTP packets,
malware-related set for FTP packets) can be performed in each re-processing round.

3.2 � Dynamic Policy Enforcement

In order to enforce different policies for each packet per re-processing round,
Mobius manages a policy memory which stores a set of policies by IDs, and its next
policy IDs. It allows a network processor to change the active policy dynamically
and provides a branch of the policy to be processed next, depending on whether
the policy works or not. Figure 4 describes this operation in detail; When a packet
arrives at the device, it first passes through the add initial policy ID module to assign
the packet a policy ID which it is initially performed. The ID can be assigned using
various criteria as to how the packet is classified, such as through source/destination
IP addresses, protocol, or a source device type.

Before entering into a network processor, the packet requests the corresponding
policy from the memory by the policy ID, and the requested policy is fetched to the
active policy in the network processor. Here, some policies should track and keep
current processing states for packet states (e.g., TCP session monitoring). Therefore,
to ensure exclusive processing states between different policy IDs of traffic flows
on changing active policies, the previously active policy is also returned and stored
back into the memory, and the network processor can follow the changes being made
for the packets continuously while handling other flows alternately. In the fetching
and storing, the memory should be a dual-port that allows multiple reads or writes
to occur at the same clock so that the fetching and storing are performed concur-
rently in a single clock cycle while ensuring consistency of policies. Otherwise, if

Add Initial policy ID

Pkt. Processor

Active policy

Next:
Mismatchd

Drop

Drop
2010

Out

3

Next:
Matched

group_3

ID

group_10

group_1
3
10

Policy

1

StoreFetch

Policy memory

1

Operation

R
eq

ue
st

Pkt. in 1

Resubmit queue

ID
A

3

Pkt.
1

B

Parse

A
ssig

n ID

Add
next

policy ID

New Packet

Resubmitted Packet

10 3 20

Pkt. out

Condition

Fig. 4   Dynamic Policy Enforcement

	 Journal of Network and Systems Management (2021) 29:3

1 3

 3   Page 10 of 26

the memory is a single-port that allows only one read or one write at each clock,
the fetching and storing should be performed over two clocks, i.e., storing the active
policy back into the memory and fetching a new policy from the memory.

After processing the packet on the processor, the next policy ID which is to be
fetched after resubmission is assigned to the packet from matched or mismatched
fields in the policy memory, according to its matching condition whether the policy
has been worked or not for this packet; If a policy is worked (e.g., matching tcp/ip
address, or matching pattern in the payload), the ID specified in matched is assigned
as the next policy ID, if not, an mismatched is assigned. A packet which has a next
policy ID is pushed into the resubmit queue. Otherwise, it no longer requires further
processing, the next ID field can be set to Out, then the packet will not receive a new
ID and will enter the output queue immediately to be forwarded to the next hop.
In addition, Drop, which means terminating current processing and discarding the
packet, can also be assigned.

3.3 � Resubmitting Operation

The key challenge of the resubmit feature is to reprocess the packets without com-
promising performance and congestion with newly arriving packets. We drew inspi-
ration its solution from how a packet is delivered on a physical wire and handled on
a network device. Figure 5 illustrates it. In a network, packetized data is delivered
as a bitstream on a physical cable to the next device. When the next device receives
the data, the network interface in the device receives the bitstream into several data
chunks (words) of n-bit (e.g., if the size of the chunk is set to 64 bits, a 100 bytes
packet (800 bits) is received in 13 chunks) [41, 42]. Here, forming the chunk of n-bit
from the bitstream spends some clocks of the device due to the propagation time of
the electrical signal on the wire, thus there are time gaps between the arrival of each
chunk in which the processor is idle. For example, when a device runs at a 100 MHz
clock rate, processes a packet into the chunks of 64-bit and has a current bandwidth
of 1 Gbps. Sending 64 bits of bitstream on the 1 Gbps wire takes 64 ns (1 Gbps =
1 ns/bit) and 64 ns is the equivalent of 7 clocks on the device (100 MHz = 10 ns/
clock). This means that the chunk is created every 7-clock per chunk, and there are
idle for 6-clocks waiting for the next chunk.

The resubmit feature utilizes these idle clocks by inserting processed packets
back to idle slots in the input queue. Figure 6 illustrates a detailed example and oper-
ation. In this figure, a chunk arrives at the device every four clocks, so there are

Network Device

Input Queue

Pkt. Bitstream Intf.

Build a chunk

{

Idle
clock

n-bit
chunk

P
ro

ce
ss

o
r

Fig. 5   Bitstream to a chunk (word)

1 3

Journal of Network and Systems Management (2021) 29:3 	 Page 11 of 26  3

three idle clocks; A new chunk for an incoming packet is assigned a policy ID and
will be entered to a network processor. After processing, the packet needs additional
processing, the packet is pushed into the resubmit queue in chunks. The chunks in
the resubmit queue enter the input queue under the control of the congestion control
module which monitors a collision whether there is a chunk in the input queue. If a
collision occurs due to new incoming chunks, the congestion control module puts
the resubmitted chunks wait until the input queue is idle. If not, it pops a chunk from
the resubmit queue into the input queue.

The maximum possible number of resubmissions for a packet is related to the
device’s potential resources, especially the clock rate of a device; If the number of
resubmissions exceeds the potential resources, more packets will enter the resub-
mit queue than leave (i.e., the resubmit queue is saturated), which will soon fill the
queue and result in packet loss. The effective submission count (including the first
submission) is related to current network bandwidth, which a network processor is
currently processing (e.g., if packets come from multiple interfaces, the network
bandwidth is equal to the sum of the bandwidth of each interface), the clock rate of
the device, and the size of a chunk. With the bandwidth denoted as B, a clock rate as
f and a chunk size as C, the number of submissions S(n) is

As shown in the equation, the number of submissions varies according to the current
network bandwidth. Therefore, for consistent operation, the resubmission can be
established by assuming the maximum bandwidth on a network as B and it derives
the number of submissions when the device has maximum utilization. Instead, it is
also possible to dynamically adjust the number of resubmission by monitoring cur-
rent bandwidth usage, e.g., when the current bandwidth is low, more resubmits can
be performed.

(1)S(n) ∶ n ≤

⌊
C(bits)

B(bps)
× f (Hz)

⌋

Pkt.
A

1

Pkt.
B

20

Pkt.
A

1

Pkt.
B

20

Pkt.
C

30

Processing

Idle?

Pkt.
B

20

20

Pkt.
B

Congestion Control

Resubmitted
Pkt. Chunk

Pkt.
APkt.

Chunk

Add policy ID

Chunk for new packets

Chunk for resubmitted packets

Fig. 6   Resubmitting operation

	 Journal of Network and Systems Management (2021) 29:3

1 3

 3   Page 12 of 26

By combining the two processing structures, Mobius consequently allows a
network processor to handle a packet n more times, and it applies the number of
policies by n times. Therefore, the total number of policies can be increased to the
policy capacity of the processor multiplied by the number of resubmissions. For
example, if the capacity of a processor is 1,000, the number of polices can increase
to 2,000 with two resubmissions. If the capacity of a processor is 5,000, the number
of polices can grow to 20,000 with four resubmissions.

3.4 � Workflow

A generalization of packet processing with Mobius can be described in Fig. 7;
Mobius can be regarded to provide a processor the loop and conditional statements.
Its application allows a network processor not only to handle more polices by chang-
ing policies per each loop but also to provide various operation scenarios at the pro-
cessor level.

A greater number of policies The basic method is to increase the number of
supported policies using the policy ID as a counter; Packets are initially assigned

Start

Process
with policy

Get
Policy ID

Has more
to do?

Get
Another policy ID

End

Yes

No

Policy
Memory

Dynamic
Policy
Enforcemnet

Packet
Resubmitting

Fig. 7   General workflow for Mobius

1 3

Journal of Network and Systems Management (2021) 29:3 	 Page 13 of 26  3

with ID number 1, then its next ID is set to the current ID plus one (i.e., 2), and
its next ID is set to 3, and so on. This policy chain consequently increases the total
number of policies n-fold.

Conditional statement Another application is providing conditional processing
by subdividing policy IDs into a binary tree scheme. Figure 8 shows the example
of this, which provides exact policy for each protocol; the policies of ID 1-3 are
used for determining protocols (e.g., policy 1 looks up TCP 80 port), and the policy
10-11, 20 and 30 contain policies for each protocol, and they are arranged hierarchi-
cally according to matched/mismatched result. Hence, protocols are filtered by the
elimination method so that detailed policies can be applied for each packet.

3.5 � Policy Configuration

To configure the policy memory and the initial policy allowing packets to be resub-
mitted, Mobius provides an application programming interface on host software as
depicted in Fig. 9; The network device that equips Mobius receives configuration
values from a host by reading registers on the host control register layer and update
their memory and table if new values are written on the registers. The device driver
deliverers these configuration values from the host to the network device, and an
administrator can provide the values via two APIs mainly, setInit (packet, ID) to set
the initial policy ID and setMemory (ID. [policy] , next_match, next_mismatch)
to set the policy memory.

4 � Implementation

In order to validate the efficiency and feasibility of the Mobius design, we have
implemented a prototype of Mobius using NetFPGA-SUME (Figure 10), a
FPGA-based PCI Express board with four SFP+ 10 Gbps interfaces and a Xilinx
Virtex-7 XC7V690T [12, 13]. This prototype was built on the reference NIC of

Policy 1:
TCP_1

Policy 10:
HTTP_1

Policy 2:
TCP_2

Policy 11:
HTTP_2

Policy 20:
FTP

Policy 3:
TCP_3

matched mismatched

matched mismatched

-> is HTTP?

-> is FTP?

Policy 30:
SSH

matched

-> is SSH?

mismatched

Drop

Fig. 8   Conditional policy processing

	 Journal of Network and Systems Management (2021) 29:3

1 3

 3   Page 14 of 26

the NetFPGA-SUME project [44], which processes packets in chunks of 256-bit
at a 160 MHz clock rate. The policy memory and the initial policy ID table are
implemented using a dual-port Block-RAM (BRAM) and they are set to store
65,535 entries in this prototype. The resubmit queue can hold up to 2000 bytes of
byte stream. All FPGA codes are written in Verilog and synthesized with Xilinx
Vivado. The device driver is extended based on the reference driver of NetFPGA-
SUME, and the configuration APIs are implemented in C with 500 LoC, and
communicates with the driver via ioctl and NetLink protocol.

Network Device

Pkt. Processor

Active policy

Operation

Add Initial policy ID
Policy memory

Initial policy ID Table

Host control registers

Initial policy ID register Policy memory reigster

Host software

Device Driver

setInit(packet, ID) setMemory(ID, [policy],
 next_match, next_mismatch)

Fig. 9   Policy configuration

Fig. 10   NetFPGA-SUME board

1 3

Journal of Network and Systems Management (2021) 29:3 	 Page 15 of 26  3

Target network processor In order to increase the practicality of the evaluation,
we have implemented the simple string matcher of Sourdis et al. [43] as seen in
Figure 11a and used it as the target network processor in this prototype. The string
matcher works on a state machine (i.e., automata), so it has a delay of 32-clock to
process every 256-bit chunk input. Its policy memory stores a set of patterns as poli-
cies and the state transition of the automata for each policy ID. For the evaluation,
the string matcher is limited to process 100 patterns at once. Consequently, our test
network device which equips Mobius is implemented like Fig. 11b.

5 � Evaluation

The main points of our evaluation are: (1) to show the throughput and latency varia-
tions by the resubmit feature, and (2) to validate the improvement in network proces-
sor capability via Mobius.

5.1 � Resubmitting performance

We measure the throughput and latency variations by Mobius while changing the
numbers of resubmissions. The measurements are performed on three machines
that have Intel Xeon E5-2630 CPU and 64 GB of RAM. We install the NetFPGA-
SUME board on one of the machines to run Mobius, and the other machines have
Intel X520 10GbE NICs packet as sender/receivers, which are connected to the
NetFPGA-SUME machine with 10 Gbps. The patterns to be deployed on the string
matcher are randomly collected from Snort 2.9.7 default rulesets.

Throughput For the throughput measurement, the sender machine generates
packet bursts of different-sized packets (64, 128, 256, 512, 1024 and 1514 bytes)
using an Intel DPDK-Pktgen [45] and sends them to the receiver machine. Figure 12a
shows its result; the throughputs with up to four times of resubmission (i.e., 100 × 4
patterns) remain constant close to simple forwarding. However, when the number of
resubmissions exceeds this amount (i.e., 100 × 5, 6 and 8 patterns), an approximate
20% performance degradation occurs for each excess. This result demonstrates that

Packet processor (Simple String Matching)

CMP

CMP

CMP

#1

#2

#n

PatternShift Reg.

Pkt.

Policy memory

R
eq

ue
st

P

ol
ic

y

Patterns

State

State

yx

Next ID

(a) Target network processor: Simple string
matcher based on [43]

Pkt. Processor
(Simple str. matcher)

Match100

Policy memory

Resubmit queue

OutPkt. in

(b) Prototype network device with Mobius

Fig. 11   Implementation details

	 Journal of Network and Systems Management (2021) 29:3

1 3

 3   Page 16 of 26

the resubmit feature can be used without loss of throughput, as Equation 1 in the
design section is satisfied ( S(n) = n ≤ ⌊160MHz∕10Gbps × 256bit⌋, n ≤ 4 ). In other
words, it proves that additional processing during the idle clock periods is valid.

One interesting thing is that the throughput trend by resubmitting is different
from a general throughput trend, which means that the throughput increases as the
packet size increases and PPS (Packet-per-seconds) decreases.This is because the
size of the resubmit queue is managed in size, not the number of packets. As the size
of the queue is 2000 bytes, the packets of 64 bytes can be stored to 31 packets but
the packets of 1514 bytes can be stored in only one packet. Therefore, the larger size
of the packets is, the easier it is to overflow the queue (i.e., higher loss rate). This
results in a slight decrease in throughput for increasing packet sizes.

Latency For the latency measurement, the sender machine sends 256-byte TCP
packets via Nping [46] to the receiver, and we measure its Round-trip time (RTT).
In each case, 100 measurements are taken, and the results are shown in the CDF
graph in Fig. 12b; There is a slight increase in latency as the number of submis-
sions increases, and 32 resubmissions resulted in an average delay of about 10 us
compared to simple forwarding. This result occurs because reprocessing must spend
the fixed amount of clock for itself on each round, thus the overall latencies will
increase in proportion to the resubmission times. To analyze it in more detail, the
network processor (i.e., string matcher) has the delay of 32-clock to process a chunk
once and it is about 200 ns in 160 MHz clock of NetFPGA-SUME. While resub-
mitting, a packet should go through the processor, suffering the 200 ns delay on
every resubmission. Also, there are additional delays by the internal buffer or queue
while resubmissions are performing. Hence, the packet has an accumulated delay of
200+@ ns for each resubmission round and it is shown as the latency increase.

5.2 � Comparing with Alternatives

To validate the improvement for the network processor via Mobius, we compare
Mobius to the alternative network processor models with extending our string

Packet size (bytes)

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

64 256 512 1024 1514

2
4

6
8

10
11

Fwd. S(1)
S(2) S(4)
S(5) S(6)
S(8)

128

(a) Throughput

Latency (usec)
50 60 70 80

C
D

F
0.

2
0.

4
0.

6
0.

8
1

Fwd.
S(1)
S(2)
S(4)
S(8)
S(32)

(b) Latency

Fig. 12   Performance variation by resubmitting

1 3

Journal of Network and Systems Management (2021) 29:3 	 Page 17 of 26  3

matcher, as follows: (1) A naive network processor, which is the most common case
that simply runs for the specified processing. It is represented by a single string
matcher for 100 patterns (Fig. 13a). (2) An extended network processor, which is
scaled to handle the greater number of policies at once. This is modeled by string
matching for 400 patterns (Fig. 13b). 3) A pipelined network processor, which
supports more policies in staged procedure. We implement this model with four-
stage pipelined string matchers for 100 patterns (Fig. 13c). In other words, except
for the simple network processor model, all models (including Mobius) can handle
up to 400 patterns natively. All models are also implemented and evaluated with
NetFPGA-SUME.

Throughput comparison We first compare throughput of them for 100 and 400
patterns. The test environment is configured in the same manner as the throughput
measurement above. Figure 14 shows its result. As shown in the graphs, the simple
processor design suffers huge degradation for the 400 patterns. As we mention in
Sect. 2, this is because the simple processor inevitably delays packets in the input
queue since the processing time should be stretched 4 times to handle 400 patterns
with the capacity of 100 patterns. Hence, large amounts of packets are dropped,
resulting in significant throughput degradation. On the other hand, although the pro-
cessor capacity of Mobius is also for 100 patterns, Mobius can support 10 Gbps
throughput for both 100 and 400 patterns the same as the extended and the pipelined
processor. This result shows that Mobius has successfully increased the number of
policies that can be supported, without scaling up the processor.

Latency comparison Next, we compare latency of each case. This evaluation
is also performed in the same way as the previous method. Figure 15 shows the
result. The extended processor shows minimal latency regardless of the number of
patterns, and this is because it can handle up to 400 patterns within a single cycle,

Match100
Pkt. Out

(a) The simple network processor: Single
string matcher for 100 patterns without
Mobius

Match400
Pkt. Out

(b) The extended network processor: Sin-
gle string matcher for 400 patterns with-
out Mobius

Match100
Pkt.

Match100 Match100 Match100
 Out

(c) The pipelined network processor: 4-stage pipelined string matchers for 100 patterns each

Fig. 13   Network processor operational models

	 Journal of Network and Systems Management (2021) 29:3

1 3

 3   Page 18 of 26

thus latency is not variable. However, the pipelined processor always has a constant
delay as it must pass through the stretched procedure all the time. Therefore, latency
is always slower than others in any case even when a small number of patterns are
required or the process is finished early (e.g., finds a match one in an early stage). On
the other hand, Mobius and the simple processor increase latency in proportion to
the number of policies actually used as they can finish the processing on the way if
it does not require extra processing. Hence, for 100 patterns, the simple and Mobius
models are a little faster than the pipelined model as they process at once while the
pipelined model processes over four times. For 400 patterns, the simple and Mobius
and pipelined models go through the same four processes, so the latency is almost

Packet size (bytes)
64 256 512 1024 1514

T
h

ro
u

g
h

p
u

t
(G

b
p

s)
2

4
6

8
10

11

Mobius
Simple
Extended
Pipelined

128

(a) Throughput for 100 patterns

Packet size (bytes)
64 256 512 1024 1514

T
h

ro
u

g
h

p
u

t
(G

b
p

s)
2

4
6

8
10

11

Mobius
Simple
Extended
Pipelined

128

(b) Throughput for 400 patterns

Fig. 14   Throughput comparison with alternatives

40 50 60 70 80
Latency (usec)

0.
2

0.
4

0.
6

0.
8

1

C
D

F

Mobius

Simple

Extended

Pipelined

(a) Latency for 100 patterns

40 50 60 70 80
Latency (usec)

0.
2

0.
4

0.
6

0.
8

1

C
D

F

Mobius

Simple

Extended

Pipelined

(b) Latency for 400 patterns

Fig. 15   Latency comparison with alternatives

1 3

Journal of Network and Systems Management (2021) 29:3 	 Page 19 of 26  3

same. Namely, there is no wasted latency for a small number of patterns as opposed
to the pipelining.

Resource and power consumption Next, we compare the resource usage which
means the complexity and quantity of the circuits and is related to cost efficiency.
The resource usage is evaluated by measuring the LUT usage in NetFPGA-SUME
when implementing the processor models, and Fig 16a shows the results. Compared
with the simple string matcher, Mobius has an approximately 7% resource overhead.
However, the extended and pipeline models use more than twice more LUT than
simple processor, meaning that they are much more expensive to implement. This
result implies that the existing modles should pay more to support many policies,
but Mobius can achieve these features with a lightweight design and without paying
much of a price.

The tradeoff for Mobius, how Mobius supports the same number of polices with
a quarter of resources than the extended and pipelined processors, is the clock con-
sumption. The circuit structure of the Mobius processor is essentially no different
from a simple processor, but Mobius processes a packet four more times while the
simple processor handles a packet one time. That is, Mobius maximizes the pro-
cessor utilization and takes up four times the clock, which is like accelerating the
processor. Therefore, the hardware resources can be significantly reduced but allow-
ing greater amounts of policy to be handled. Implication of this is discussed in the
discussion section (Sect. 6).

In terms of power consumption, as seen in Fig. 16b, although there are slight dif-
ferences, all models have similar power consumption levels at the 6-watt level. This
is because the power consumption mainly comes from the network processor (i.e.,
string matcher); All operational models configured to process total 400 patterns (i.e.,
1) running a single processor 4 times, 2) placing 4 single processors, or 3) extend-
ing the processor by 4 times), thus each workload is almost same consequently. This

Resub. Single w/100
S / Pi /

Pipe w/4Mobius

30000 35000 40000 45000 50000 55000 60000 65000 70000

11

(a) FPGA usage (i.e., LUT usage)

0 1 2 3 4 5 6 7
(b) Power consumption

LU
T

 C
o

un
t

(e
a)

P
o

w
er

 (W
)

Single w/400

Fig. 16   Resource and power consumption

	 Journal of Network and Systems Management (2021) 29:3

1 3

 3   Page 20 of 26

means that it has the only difference in power consumption per circuit size, and the
overall power consumption converges almost equally.

Overall comparison In order to summarize the evaluations, the comparison with
the alternative models can be organized in Table 1. All alternatives (i.e., extended
processor, pipelined processor, and Mobius) can augment the number of polices.
In terms of performance, the extended processor guarantees the best performance
both throughput and latency in constant. The pipelined processor and Mobius also
provide line-rate throughput but latency is ease than the extended model as it per-
manently increases latency. Whereas, Mobius only increases latency proportionally
to the actual amount of policies or until processing is completed, so Mobius works
more efficiently than the pipelined one. The power consumption is all similar. In
terms of resources, the extended and pipeline processors need a lot of resources, but
Mobius only requires similar amounts of resources to the simple processor. Lastly,
although functionality is the part that is not quantitatively evaluated, as the extended
processor handles all policy in a batch, it is difficult to change policies or suggest
other conditions in the process. Hence, the functionality of the extended processor
can be considered as low. Whereas, the pipelined design and Mobius enable the con-
ditional policy handling even during processing, so they can operate policies in a
variety of ways, i.e., the functionality is high. Overall, we can see that Mobius is a
balanced solution in many ways. Although Mobius limits the number of policies that
can be increased depending on a device clock speed, we believe that Mobius has led
to a sufficient increase in the number of policies with minimal cost.

6 � Discussion and Limitation

The evaluation demonstrates that Mobius successfully extends the capability of a
network processor to support more policies without performance overhead. In par-
ticular, it uses fewer resources than other extended network processors or pipe-
line structures. Taking into consideration all of these results, we conclude that the
Mobius approach that utilizes the idle resources in a network processor addresses
the challenges presented in the motivation section. Also, as the difficulty of repeti-
tive processing of packets on hardware (e.g., Multi-tables or Goto instructions) is

Table 1   Overall comparison of the network processor models

Improved things are marked as a bold style, same or similar things are marked as a typewriter-style

Category Simple Extended Pipelined Mobius

of Policies Limited Augmentable Augmentable Augmentable
Throughput Low Best Best Best
Latency Proportional Best Low Proportional

Power Average Average Average Average

Resources (Price) Low High High Low
Functionality Incapable Incapable Capable Capable

1 3

Journal of Network and Systems Management (2021) 29:3 	 Page 21 of 26  3

well known challenges [34–36], we believe that Mobius contributes to the functional
aspects of network processors.

Mobius is considered as shifting an area-intensive design that takes up hardware
resources (i.e., LUTs in FPGA) to a clockrate-intensive design; Since the area-inten-
sive consumes a fixed amount of hardware resources regardless of current system
utilization, making it difficult to dynamically reuse the resources. On the other hand,
the amount of clock spent on actual work is proportional to system utilization, thus
the clockrate can be dynamically allocated, e.g., more clocks for one packet or a
small number clocks for multiple packets depending on the current state of a system.
Mobius takes advantage of this and can be considered as more efficient use of the
clock as dynamic resources.

For this reason, a drawback of Mobius is naturally related to the clockrate of a
device. If a device is tightly designed with a low-rate clock generator, there is little
room for Mobius to work. As shown in the resource comparison result (Figure 16a),
the LUT usage of Mobius is quarter than others, but the clock consumption is four
times higher, i.e., to achieve efficient resubmission counts, a total available clock-
rate in a device must be supported by that amount. As another possibility, even if a
network device has a low-rate clock generator, the principle of Mobius that provides
more processing during idle time of a processor is still effective. Therefore, even
if Mobius cannot increase the number of policies at full bandwidth (e.g., line-rate
speed), Mobius can still improve the utilization of the processor when not all of the
device’s bandwidth is being utilized.

Another disadvantage is that Mobius needs to modify a network processor for the
dynamic policy enforcement feature. However, this modification may be not much
overhead in our experience, since the architecture of Mobius is mainly designed
around a network processor. When we applied Mobius to the string matcher of
Sourdis et al. [43], only approximately 100 LoC of Verilog was modified in the mod-
ule. Although it is difficult to assess objectively due to many variables, we expect
that this overhead is similar to the overhead in configuring pipelining.

Lastly, the current Mobius structure does not support prioritized rules in the
resubmitting process, thus resubmitted packets are simply processed by first-in-
first-out (FIFO). We expect that Mobius can afford and support prioritized rules by
extending the resubmit queue to a priority queue, as exampled in Fig. 17; The resub-
mit queue consists of two or more queues assigned different priorities, and each
packet is enqueued to a different queue according to its priority. When the packets
are put into the input queue, the packets in the queue with high priority are served

Resubmit queue

Higher
priority Resubmitted Pkts.

Fig. 17   Resubmit queue with priority queueing

	 Journal of Network and Systems Management (2021) 29:3

1 3

 3   Page 22 of 26

first. However, the priority queue can lead to side effects such as starvation for low
priority packets, so a sophisticated scheduling theory is needed to service packets
well like [47, 48]. We believe describing the detailed theoretical model is beyond
the scope of this paper that suggests and designs the resubmit architecture, thus we
leave this feature as our future work.

7 � Related Works

Network processor The state-of-the-art studies on network processors have usually
focused on extending flexibility at high-performance.

The decent of virtualized environment (i.e., Software-defined Network (SDN)
and Network function virtualization (NFV)) has exponentially boosted the number
and complexity of network policies. However, most of studies focused on improving
packet processing on software. Forwarding Metamorphosis [49] designed program-
mable network processor for SDN/OpenFlow. ClickNP [50] was an FPGA-accel-
erated platform to offload software logic for highly flexible and high-performance
virtualized network functions. HALO [51] proposed a near-cache acceleration for
the flow classification on software packet processing. Barach et al. [52] introduced
Vector Packet Processing (VPP) for high-performance packet processing on soft-
ware router. Also, P4 [30] and FlowBlaze [53] introduced a programming interface
to customize a network processor logic on a network demand.

Some studies have focused on provides advanced network applications at high-
performance such as cryptography (McLoone et al. [54]), intrusion detection
(GNORT [55], DPFEE [56]) or multimedia purpose (HASPC [57]).

As such, most studies on network processors have been focused on how to pro-
vide diverse network services at high-performance, but no studies have considered
extensions to processor policy capability. In this regard, to the best of our knowl-
edge, our study is the first study on the policy scalability at the processor level, and
we believe that we have presented a new perspective on network processor-related
researches.

Policy management Rather the policy capability issue on network processors,
it is well known that the importance of the policy management. Libra [17] points
out the challenges in forwarding table management. Anteater [58] and VeriFlow
[59] created a data plane verification tool to detect misconfigurations on forwarding
tables. DPX [60] consolidated network services into a data plane, allowing network
policies to be managed in a simplified manner.

8 � Conclusion

As a network processor has a limited capacity in processing many policies, the
processor should divide and handle policies into several groups, and it raises per-
formance loss by the delays. In order to address this challenge, we have presented
Mobius, a packet re-processing architecture for rich policy handling on the part of
a network processor. It allows a network processor to handle packets one or more

1 3

Journal of Network and Systems Management (2021) 29:3 	 Page 23 of 26  3

times with different policies for each round without performance loss. Our evalu-
ation demonstrates that this approach has very low overhead both in terms of per-
formance and resources and is competitive to other models. As our future work, by
improving the congestion control to monitor the complexity of a network, Mobius
can dynamically provide different levels of policies based on the complexity, i.e.,
adaptive policies.

References

	 1.	 Curtis, A.R., Mogul, J.C., Tourrilhes, J., Yalagandula, P., Sharma, P., Banerjee, S.: Devoflow: Scal-
ing flow management for high-performance networks. ACM SIGCOMM Comput Commun Rev 41,
254–265 (2011)

	 2.	 Wang, Y.C., Lin, Y.D., Chang, G.Y.: Sdn-based dynamic multipath forwarding for inter-data center
networking. Int J Commun Syst 32(1), e3843 (2019)

	 3.	 Greenberg, A., Lahiri, P., Maltz, D.A., Patel, P., Sengupta, S.: Towards a next generation data center
architecture: scalability and commoditization. In: Proceedings of the ACM workshop on Program-
mable routers for extensible services of tomorrow, ACM, pp 57–62 (2008)

	 4.	 Sivaraman, A., Kim, C., Krishnamoorthy, R., Dixit, A., Budiu, M.: Dc. p4: Programming the for-
warding plane of a data-center switch. In: Proceedings of the 1st ACM SIGCOMM Symposium on
Software Defined Networking Research, ACM, p 2 (2015)

	 5.	 Burger, D., Goodman, J.R., Kagi, A.: Limited bandwidth to affect processor design. IEEE Micro
17(6), 55–62 (1997)

	 6.	 Mahapatra, N.R., Venkatrao, B.: The processor-memory bottleneck: problems and solutions. Cross-
roads 5(3es), 2 (1999)

	 7.	 Yazdanbakhsh, A., Thwaites, B., Esmaeilzadeh, H., Pekhimenko, G., Mutlu, O., Mowry, T.C.: Mit-
igating the memory bottleneck with approximate load value prediction. IEEE Design Test 33(1),
32–42 (2016)

	 8.	 Shah, S.A.R., Issac, B.: Performance comparison of intrusion detection systems and application of
machine learning to snort system. Future Gener Comput Syst 80, 157–170 (2018)

	 9.	 Day, D., Burns, B.: A performance analysis of snort and suricata network intrusion detection and
prevention engines. Fifth International Conference on Digital Society, pp. 187–192. Gosier, Guade-
loupe (2011)

	10.	 Marr, D.T., Binns, F., Hill, D.L., Hinton, G., Koufaty, D.A., Miller, J.A., Upton, M.: Hyper-thread-
ing technology architecture and microarchitecture. Intel Technology Journal 6(1), (2002)

	11.	 Saini, S., Jin, H., Hood, R., Barker, D., Mehrotra, P., Biswas, R.: The impact of hyper-threading on
processor resource utilization in production applications. In: 2011 18th International Conference on
High Performance Computing, IEEE, pp 1–10 (2011)

	12.	 NetFPGA ([Accessed 16-July-2020]) NetFPGA-SUME board. https​://netfp​ga.org/site/#/syste​
ms/1netf​pga-sume/detai​ls/

	13.	 Zilberman, N., Audzevich, Y., Covington, G.A., Moore, A.W.: Netfpga sume: Toward 100 gbps as
research commodity. IEEE Micro 34(5), 32–41 (2014)

	14.	 Agarwal, A., Lim, B.H., Kranz, D., Kubiatowicz, J.: April: a processor architecture for multiproc-
essing. In: Proceedings of the 17th annual international symposium on Computer Architecture, pp
104–114 (1990)

	15.	 Flynn, M.J., et al.: Computer architecture: Pipelined and parallel processor design. Jones & Bartlett
Learning (1995)

	16.	 VanAken, J.R., Zick, G.L.: The expression processor: a pipelined, multiple-processor architecture.
IEEE Transact Comput 8, 525–536 (1981)

	17.	 Zeng, H., Zhang, S., Ye, F., Jeyakumar, V., Ju, M., Liu, J., McKeown, N., Vahdat, A.: Libra: Divide
and conquer to verify forwarding tables in huge networks. In: 11th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 14), pp 87–99 (2014)

	18.	 Modi, C., Patel, D., Borisaniya, B., Patel, H., Patel, A., Rajarajan, M.: A survey of intrusion detec-
tion techniques in cloud. J Network Comput Appl 36(1), 42–57 (2013)

https://netfpga.org/site/#/systems/1netfpga-sume/details/
https://netfpga.org/site/#/systems/1netfpga-sume/details/

	 Journal of Network and Systems Management (2021) 29:3

1 3

 3   Page 24 of 26

	19.	 Gascon, H., Orfila, A., Blasco, J.: Analysis of update delays in signature-based network intrusion
detection systems. Comput Security 30(8), 613–624 (2011)

	20.	 Nie, X., Gazsi, L., Engel, F., Fettweis, G.: A new network processor architecture for high-speed
communications. In: 1999 IEEE Workshop on Signal Processing Systems. SiPS 99. Design and
Implementation (Cat. No. 99TH8461), IEEE, pp 548–557 (1999)

	21.	 Crowley, P.: Network Processor Design, vol. 1. Morgan Kaufmann, (2003)
	22.	 Greenberg, A., Hamilton, J., Maltz, D.A., Patel, P.: The cost of a cloud: research problems in

data center networks. ACM SIGCOMM Comput Commun Rev 39(1), 68–73 (2008)
	23.	 Wang, Z., Liu, Y., Sun, Y., Li, Y., Zhang, D., Yang, H.: An energy-efficient heterogeneous dual-

core processor for internet of things. In: 2015 IEEE international symposium on circuits and
systems (ISCAS), IEEE, pp 2301–2304 (2015)

	24.	 Ma, N., Zou, Z., Lu, Z., Zheng, L., Blixt, S.: A hierarchical reconfigurable micro-coded multi-
core processor for iot applications. In: 2014 9th International Symposium on Reconfigurable and
Communication-Centric Systems-on-Chip (ReCoSoC), IEEE, pp 1–4 (2014)

	25.	 Pfaff, B., Pettit, J., Koponen, T., Jackson, E., Zhou, A., Rajahalme, J., Gross, J., Wang, A.,
Stringer, J., Shelar, P., et al.: The design and implementation of open vswitch. In: 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 15), pp 117–130 (2015)

	26.	 Honda, M., Huici, F., Lettieri, G., Rizzo, L.: mswitch: a highly-scalable, modular software
switch. In: Proceedings of the 1st ACM SIGCOMM Symposium on Software Defined Network-
ing Research, ACM, p 1 (2015)

	27.	 Ram, K.K., Cox, A.L., Chadha, M., Rixner, S.: Hyper-switch: A scalable software virtual switch-
ing architecture. In: Presented as part of the 2013 USENIX Annual Technical Conference (USE-
NIXATC 13), pp 13–24 (2013)

	28.	 Yoon, C., Park, T., Lee, S., Kang, H., Shin, S., Zhang, Z.: Enabling security functions with sdn:
A feasibility study. Comput Networks 85, 19–35 (2015)

	29.	 Specification OS: 1.4. 0 (2013)
	30.	 Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rexford, J., Schlesinger, C., Talayco,

D., Vahdat, A., Varghese, G., et al.: P4: Programming protocol-independent packet processors.
ACM SIGCOMM Computer Communication Review 44(3), 87–95 (2014)

	31.	 Berde, P., Gerola, M., Hart, J., Higuchi, Y., Kobayashi, M., Koide, T., Lantz, B., O’Connor, B.,
Radoslavov, P., Snow, W., et al.: Onos: towards an open, distributed sdn os. In: Proceedings of
the third workshop on Hot topics in software defined networking, pp 1–6 (2014)

	32.	 Medved, J., Varga, R., Tkacik, A., Gray, K.: Opendaylight: Towards a model-driven sdn con-
troller architecture. In: Proceeding of IEEE International Symposium on a World of Wireless,
Mobile and Multimedia Networks 2014, IEEE, pp 1–6 (2014)

	33.	 P4lang ([Accessed 16-July-2020]) p4c, a reference compiler for the P4 programming language.
https​://githu​b.com/p4lan​g/p4c

	34.	 Pan, H., Guan, H., Liu, J., Ding, W., Lin, C., Xie, G.: The flowadapter: Enable flexible multi-
table processing on legacy hardware. In: Proceedings of the second ACM SIGCOMM workshop
on Hot topics in software defined networking, ACM, pp 85–90 (2013)

	35.	 Gebert, S., Jarschel, M., Herrnleben, S., Zinner, T., Tran-Gia, P.: Table visor: An emulation layer
for multi-table open flow switches. In: 2015 Fourth European Workshop on Software Defined
Networks, IEEE, pp 117–118 (2015)

	36.	 Long, F., Sun, Z., Zhang, Z., Chen, H., Liao, L.: Research on tcam-based openflow switch plat-
form. In: 2012 International Conference on Systems and Informatics (ICSAI2012), IEEE, pp
1218–1221 (2012)

	37.	 PICA8 ([Accessed 16-July-2020]) PICA8 switch manual. https​://docs.pica8​.com/displ​ay/PicOS​
36sp/Goto_table​

	38.	 Arista ([Accessed 16-July-2020]) Arista switch manual. https​://www.arist​a.com/asset​s/data/pdf/
user-manua​l/um-eos/Chapt​ers/OpenF​low.pdf

	39.	 HP ([Accessed 16-July-2020]) HP switch manual. https​://commu​nity.hpe.com/hpeb/attac​hment​s/
hpeb/sdn-discu​ssion​s/784/1/OpenF​low switc​h confi​gurat​ion - emr_na-c0399​1489-1.pdf

	40.	 Cisco ([Accessed 16-July-2020]) OpenFlow. https​://www.cisco​.com/c/en/us/td/docs/switc​hes/
lan/catal​yst29​60xr/softw​are/15-2_5_e/confi​gurat​ion_guide​/b_1525e​_conso​lidat​ed_2960x​r_cg/
openf​low.pdf

	41.	 Gupta, P.C.: Data communications and computer networks. PHI Learning Pvt. Ltd, Delhi (2013)

https://github.com/p4lang/p4c
https://docs.pica8.com/display/PicOS36sp/Goto_table
https://docs.pica8.com/display/PicOS36sp/Goto_table
https://www.arista.com/assets/data/pdf/user-manual/um-eos/Chapters/OpenFlow.pdf
https://www.arista.com/assets/data/pdf/user-manual/um-eos/Chapters/OpenFlow.pdf
https://community.hpe.com/hpeb/attachments/hpeb/sdn-discussions/784/1/OpenFlow%20switch%20configuration%20-%20emr_na-c03991489-1.pdf
https://community.hpe.com/hpeb/attachments/hpeb/sdn-discussions/784/1/OpenFlow%20switch%20configuration%20-%20emr_na-c03991489-1.pdf
https://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst2960xr/software/15-2_5_e/configuration_guide/b_1525e_consolidated_2960xr_cg/openflow.pdf
https://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst2960xr/software/15-2_5_e/configuration_guide/b_1525e_consolidated_2960xr_cg/openflow.pdf
https://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst2960xr/software/15-2_5_e/configuration_guide/b_1525e_consolidated_2960xr_cg/openflow.pdf

1 3

Journal of Network and Systems Management (2021) 29:3 	 Page 25 of 26  3

	42.	 Lisa Bechtold ([Accessed 16-July-2020]) Bit rate and frequency in data communications. https​://
www.cabli​ngins​tall.com/conne​ctivi​ty/rj45-utp-shiel​ded/artic​le/16469​695/bit-rate-and-frequ​ency-in-
data-commu​nicat​ions

	43.	 Sourdis, I., Pnevmatikatos, D.: Fast, large-scale string match for a 10gbps fpga-based network intru-
sion detection system. In: International Conference on Field Programmable Logic and Applications,
Springer, pp 880–889 (2003)

	44.	 NetFPGA-SUME ([Accessed 16-July-2020]) NetFPGA Reference NIC. https​://githu​b.com/NetFP​
GA/NetFP​GA-SUME-publi​c/wiki/NetFP​GA-SUME-Refer​ence-NIC

	45.	 Intel ([Accessed 16-July-2020]) Intel DPDK: Data Plane Development Kit. http://dpdk.org
	46.	 Nping ([Accessed 16-July-2020]) An Open source network packet generation,. https​://nmap.org/

nping​/
	47.	 Haupt R (1989) A survey of priority rule-based scheduling. Operations-Research-Spektrum

11(1):3–16
	48.	 Dragicevic, K., Bauer, D.: A survey of concurrent priority queue algorithms. In: 2008 IEEE Interna-

tional Symposium on Parallel and Distributed Processing, IEEE, pp 1–6 (2008)
	49.	 Bosshart, P., Gibb, G., Kim, H.S., Varghese, G., McKeown, N., Izzard, M., Mujica, F., Horowitz,

M.: Forwarding metamorphosis: Fast programmable match-action processing in hardware for sdn.
ACM SIGCOMM Comput Commun Rev 43(4), 99–110 (2013)

	50.	 Li, B., Tan, K., Luo, L., Peng, Y., Luo, R., Xu, N., Xiong, Y., Cheng, P., Chen, E.: Clicknp: Highly
flexible and high performance network processing with reconfigurable hardware. In: Proceedings of
the 2016 ACM SIGCOMM Conference, pp 1–14 (2016)

	51.	 Yuan, Y., Wang, Y., Wang, R., Huang, J.: Halo: accelerating flow classification for scalable packet
processing in nfv. In: 2019 ACM/IEEE 46th Annual International Symposium on Computer Archi-
tecture (ISCA), IEEE, pp 601–614 (2019)

	52.	 Barach, D., Linguaglossa, L., Marion, D., Pfister, P., Pontarelli, S., Rossi, D.: High-speed software
data plane via vectorized packet processing. IEEE Commun Magazine 56(12), 97–103 (2018)

	53.	 Pontarelli, S., Bifulco, R., Bonola, M,. Cascone, C., Spaziani, M., Bruschi, V., Sanvito, D., Sira-
cusano, G., Capone, A., Honda, M., et al.: Flowblaze: Stateful packet processing in hardware. In:
NSDI, pp 531–548 (2019)

	54.	 McLoone, M., McCanny, J.V.: A single-chip ipsec cryptographic processor. In: IEEE Workshop on
Signal Processing Systems, IEEE, pp 133–138 (2002)

	55.	 Vasiliadis, G., Antonatos, S., Polychronakis, M., Markatos, E.P., Ioannidis, S.: Gnort: High perfor-
mance network intrusion detection using graphics processors. In: International Workshop on Recent
Advances in Intrusion Detection, Springer, pp 116–134 (2008)

	56.	 Jyothi, V., Addepalli, S.K., Karri, R.: Dpfee: A high performance scalable pre-processor for network
security systems. IEEE Transact Multi Scale Comput Syst 4(1), 55–68 (2017)

	57.	 Avudaiammal, R., Swarnalatha, A., Seethalakshmi, P.: Network processor based high speed packet
classifier for multimedia applications. Wireless Personal Commun 98(1), 1219–1236 (2018)

	59.	 Mai, H., Khurshid, A., Agarwal, R., Caesar, M., Godfrey, P., King, S.T. Debugging the data plane
with anteater. In: ACM SIGCOMM Computer Communication Review, ACM, vol 41, pp 290–301.
(2011)

	59.	 Khurshid, A., Zou, X., Zhou, W., Caesar, M., Godfrey, P.B.: Veriflow: Verifying network-wide
invariants in real time. In: Presented as part of the 10th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 13), pp 15–27 (2013)

	60.	 Park, T., Kim, Y., Yegneswaran, V., Porras, P., Xu, Z., Park, K., Shin, S.: Dpx: Data-plane exten-
sions for sdn security service instantiation. In: International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment, Springer, pp 415–437 (2019)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://www.cablinginstall.com/connectivity/rj45-utp-shielded/article/16469695/bit-rate-and-frequency-in-data-communications
https://www.cablinginstall.com/connectivity/rj45-utp-shielded/article/16469695/bit-rate-and-frequency-in-data-communications
https://www.cablinginstall.com/connectivity/rj45-utp-shielded/article/16469695/bit-rate-and-frequency-in-data-communications
https://github.com/NetFPGA/NetFPGA-SUME-public/wiki/NetFPGA-SUME-Reference-NIC
https://github.com/NetFPGA/NetFPGA-SUME-public/wiki/NetFPGA-SUME-Reference-NIC
http://dpdk.org
https://nmap.org/nping/
https://nmap.org/nping/

	 Journal of Network and Systems Management (2021) 29:3

1 3

 3   Page 26 of 26

Taejune Park  Taejune Park is currently pursuing his Ph.D. degree in School of Computing at KAIST,
Republic of Korea, from September 2015. He received his B.S. degree in Computer Engineering at Korea
Maritime and Ocean University, Republic of Korea, in August 2013, and his M.S. degree in Information
Security at KAIST, Republic of Korea, in August 2015. His research interests focus on the security issues
on SDN/NFV environments and data-planes.

Seungwon Shin  Seungwon Shin is an associate professor in the School of Electrical Engineering at
KAIST. He received his Ph.D. degree in Computer Engineering from the Electrical and Computer Engi-
neering Department, Texas A&M University, and his M .S degree and B.S degree from KAIST, both in
Electrical and Computer Engineering. He is currently a Research Associate of Open Networking Foun-
dation (ONF), and a member of security working group at ONF. His research interests span the areas of
Software Defined Networking (SDN) security, IoT security, and Botnet analysis/detection.

Affiliations

Taejune Park1 · Seungwon Shin2

	 Taejune Park
	 taejune.park@kaist.ac.kr

1	 School of Computing, KAIST, 291 Daehak‑ro, Yuseong‑gu, Daejeon 34141, Republic of Korea
2	 School of Electrical Engineering, KAIST, 291 Daehak‑ro, Yuseong‑gu, Daejeon 34141,

Republic of Korea

