
SECURITY AND COMMUNICATION NETWORKS
Security Comm. Networks 2016; 9:1971–1982

Published online 26 October 2015 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/sec.1369

RESEARCH ARTICLE

Vulnerabilities of network OS and mitigation with
state-based permission system
Jiseong Noh, Seunghyeon Lee, Jaehyun Park, Seungwon Shin and Brent Byunghoon Kang*

Graduate School of Information Security, School of Computing, Korea Advanced Institute of Science and Technology, Daejeon, Korea

ABSTRACT

The advancement of software defined networking (SDN) is redefining traditional computer networking architecture.
The role of the control plane of SDN is of such importance that SDNs are referred to as network operating systems (OSs).
However, the robustness and security of the network OS has been overlooked. In this paper, we report three main issues
pertaining to network OSs. First, we identified vulnerabilities that could be exploited by malicious or buggy applications
running on network OSs. We also identified four major attack vectors that could undermine network OS operations: denial
of service, global data manipulation, control plane poisoning, and system shell execution. Further, it was demonstrated
that real-world attacks can be launched on commonly used network OSs without significant effort. Second, we present
a method to address the attacks by analyzing network applications running on network OSs to identify their behavioral
features, which enabled the extraction of a permission set for each network application. Based on this work, a permission-
based malicious network application detector was introduced, which examines the permission set of each application and
prevents it from executing without permission. Our system shows almost no performance overhead. Copyright © 2015
John Wiley & Sons, Ltd.

KEYWORDS

network security; software defined networking; network operating system

*Correspondence

Brent Byunghoon Kang, Graduate School of Information Security, School of Computing, Korea Advanced Institute of Science and
Technology, Daejeon, Korea.
E-mail: brentkang@kaist.ac.kr

1. INTRODUCTION

Software defined networking (SDN) is a revolutionary
computer networking architecture whose programmabil-
ity, flexibility, and dynamism serve to distinguish it from
legacy computer networks. In general, an SDN with a
single centralized controller abstracts underlying network
infrastructures (e.g., network routers or switches) to pro-
vide network applications with a global view. Considering
its similar role to that of traditional operating systems
(OSs) (e.g., Linux), namely, the abstraction of system
resources to their applications, SDN controllers can be
regarded as a network OS [1]. A number of network OSs
have been proposed for which there are various network
applications available [1–5]. Several research projects [6,7]
have employed network OSs, which have even been used
in commercial products, such as the Google B4 project
and Facebook datacenter [8,9]. In situations such as these,
establishing the security, robustness, and reliability of a
network OS has become crucial because a network OS

would be the main target of attackers who would be able to
control a target network simply by compromising a single
target (i.e., the network OS).

Considering the vulnerability of a network OS, it would
be reasonable to expect that aspects of the security prob-
lems would have been addressed in existing studies. How-
ever, we discovered that most of the work relating to
network OSs was directed at performance issues [10] or
distributed architectures [11,12]. In fact, a limited number
of studies have attempted to shed some light on the security
problems associated with SDN [13]; however, their contri-
butions may not eliminate every possible problem, as their
efforts were mainly limited to presenting the possibilities
or side effects of attacks [13,14].

The scarcity of studies exposing security (or robustness)
issues relating to network OSs prompted our decision to
examine these issues. One of these studies [15] introduced
issues that could threaten the robustness and security of
existing network OSs. Using this paper, we identified pos-
sible threat vectors applicable to existing network OSs and

Copyright © 2015 John Wiley & Sons, Ltd. 1971



Vulnerabilities of network OS and mitigation with state-based permission system J. Noh et al.

categorized them for further analysis. In addition to catego-
rizing the threats, our research also extended to executing
attack trials of real-world network OSs. For example, an
attack was conducted that was aimed at modifying the
internal information of a network OS with the ultimate goal
of confusing other critical network applications. Cases are
presented in Section 3.

Based on our analysis and categorization of threat
vectors, a possible defense mechanism is presented, con-
sidering the characteristics of a network OS. Our defense
approach consists of an initial analysis of the behavioral
operations of existing network applications running on
a network OS, following which an attempt is made to
generalize these behavioral patterns. These patterns were
expected to enable us to extract selected features that
would allow the definition of most of the critical opera-
tions (or functions) of a network application. Finally, the
features that were identified in this manner were imple-
mented to control the operations of a network application
with the aim of avoiding unintended and unexpected mis-
behavior (e.g., crashing the network OS). Using these
features, we proceed to define permission-based roles for
each network application, which could be used by net-
work administrators as elements for selectively permitting
operations, thereby allowing the necessary features for a
network application to be specified. Using defined roles
for network applications would enable the detection of a
network application that behaves abnormally.

The main contributions of our work are categorized
as follows.

� Most of the possible attack vectors against a net-
work OS are categorized. This paper describes the
implementation of several attack network applica-
tions and demonstrates that they are able to crash,
confuse, or misuse network OSs without significant
effort.

� The operations of a network application are analyzed,
and the critical features that could have a serious
effect on a network OS are extracted.

� A novel defense mechanism is proposed for defending
a network OS against diverse attacks. It is shown that
our approach detects (and prevents) attacks by simply
defining selected necessary features. This approach
shows almost zero overhead in our test cases due to a
lightweight design.

2. BACKGROUND

Software defined networking is a new network paradigm
that decouples the control plane (deciding how a packet
is forwarded to a destination) from the data plane (actu-
ally delivering packets based on the decision of the control
plane), thereby using software to enable the network to
become intelligent. SDN enables a logically centralized
network; thus, it is considered a promising architec-
ture capable of addressing current problems in the com-

puter networking area [16]. SDN consists of three main
components: (i) a data plane; (ii) a control plane (also
known as a network OS or a controller); and (iii)
network applications.

Figure 1 shows a simplified SDN network architecture.
A brief description is provided of packet delivery from the
source to the destination in the network. At first, when
a new packet is initiated from the source host (i.e., Host
A) and sent to a switch (i), the switch first looks up its
flow table to check if a flow rule that can handle this
packet is present in its flow table entry. If the switch can-
not find a flow rule for handling the packet, it will send
a request for a flow rule to the network OS (ii). Next, the
network OS delivers this request to the network applica-
tion, upon which the application (here, we assume that a
network application simply forwards all packets to a tar-
get host) will generate a flow rule to handle this packet
(iii). The network OS will enforce this rule to the switch
(iv); and finally, this packet will be forwarded to Host
B (v). The OpenFlow [17] protocol is widely used for
communication between the switch and the network OS.
This protocol is currently the de facto standard proto-
col for communication between the two entities under an
SDN environment.

This example indicates that all components of the data
plane in an SDN network should connect to a network OS
(or a set of network OSs). Therefore, the network OS will
be a centralized control point at which flow rule informa-
tion is received or from which status information is sent.
In this environment, the network OS (and its applications)
controls all network flows passing through these network
devices. Likewise, the network OS controls the whole

Figure 1. Simple software defined networking operation: how a
packet is traversed from source to destination.

1972 Security Comm. Networks 2016; 9:1971–1982 © 2015 John Wiley & Sons, Ltd.

DOI: 10.1002/sec



J. Noh et al. Vulnerabilities of network OS and mitigation with state-based permission system

network environment; thus, it can be regarded as the brain
of a network environment.

3. ATTACKING NETWORK
OPERATING SYSTEM

This section presents possible attack scenarios against
existing network OSs with real examples.

3.1. Assumption and test environment

The assumption is made that an application, provided by
a third-party developer, can be installed on a network OS.
We believe that the assumption is feasible because most
network OSs highly encourage anyone who has an interest
in this area to implement a network application by releas-
ing open APIs [1–5]. Moreover, this trend can be seen in
industry, for example, a network application store that has
been launched by HP [18].

Our attacks were demonstrated by employing three
well-known network OSs: NOX version 0.9.2, FloodLight
version 0.90, and OpenDayLight version 1.0. All the tests
were conducted in a Mininet version 2.0 [19] environment,
which is a popular SDN emulator, and four different types
of attacks were tested against these network OSs.

3.2. Attack summary

Table I summarizes the four attack vectors that were found.
The denial of service (DoS) attack is either capable of
affecting the performance of a network OS or harms the
availability of both the network applications and the net-
work OS itself. The internal storage manipulation attack
was targeted at all the mentioned types of network OSs,
except for OpenDayLight. This form of attack breaks the
integrity of internal data and could cause the applications
running on the network OS to function in an unintended
manner. The data plane poisoning attack affects the data
plane by manipulating the flow entries of a switch. The sys-
tem shell execution allows a network application to execute
arbitrary system calls that would be capable of destroying
a system. Table I shows these different types of attack and
practical example codes executed on FloodLight.

3.3. Denial of service attack

NOX case. There are two ways to perform this attack on
NOX: CPU consumption and OpenFlow event delivery
prevention. As NOX does not have a resource manage-

ment scheme, such as CPU and memory usage restriction,
running an infinite loop in the application is enough to con-
sume the resources of a network OS. The second approach
is to block an OpenFlow event from being sent to other
applications. By design, it is the responsibility of each
network application to decide whether to keep an exist-
ing OpenFlow event or to send it to other applications.
When an event handler in one application receives an
OpenFlow event, it can decide whether the event should
be kept and sent to other applications through its return
value. If the return value of the event handler is STOPPED,
the event dispatcher in a NOX kernel does not proceed
to deliver the OpenFlow event to other applications. An
application developer can assign the highest priority for a
specific OpenFlow event type in the application to enable
it to receive the event first and prevent other applica-
tions, including a forwarding application, from receiving
the event.

FloodLight case. By design, a FloodLight controller has
to wait until an application completes its process. This
behavior is very similar to that of NOX. The malicious
application is able to loop itself infinitely, upon which
FloodLight stops working and waits until the malicious
application finishes its work.

OpenDayLight case. An attack on this network OS can
be achieved by implementing an application that creates a
number of threads. If the number of unnecessary threads
is sufficiently large, that is, hundreds, OpenDayLight is
slowed down operationally. Table II shows the decrease in
performance as the number of threads increases. Eventu-
ally, OpenDayLight becomes unresponsive when a mali-
cious application creates more than 500 threads.

3.4. Internal storage manipulation attack

FloodLight case. This type of attack only applies to Flood-
Light at this time. The attack is performed by allowing
a malicious application to access the core database and
manipulate its data (i.e., manipulate internal storage). The
effectiveness of this type of attack was demonstrated on

Table II. Latency of the first packet forwarding without flow
entry in switch according to attack threads.

Thread counts Initiating packet latency

No thread 0.20 ms
100 threads 0.73 ms
500 threads Unreachable

Table I. Summary of vulnerable attack vectors on each network operating system.

Attack vectors NOX FloodLight OpenDayLight Practical example (FloodLight)

Denial of service O O O return Commands.STOP
Internal storage manipulation X O Unknown storageSource.executeQuery()
Data plane poisoning O O Partial sw.clearAllFlowMods()
System shell execution O O O Runtime.getRuntime().exec()

Security Comm. Networks 2016; 9:1971–1982 © 2015 John Wiley & Sons, Ltd. 1973
DOI: 10.1002/sec



Vulnerabilities of network OS and mitigation with state-based permission system J. Noh et al.

Figure 2. An example of data manipulation.

Figure 3. Example of data plane poisoning attack in FloodLight
controller.

FloodLight by configuring the simple test environment
shown in Figure 2. The test involved the creation of a sim-
ple DoS detector application, which periodically checks
the Packet_in count value in the internal storage of
FloodLight, and it reports alerts if the count value exceeds
a predefined threshold value (shown in Figure 2(c)).
Then a malicious application is installed (the red box in
Figure 2(a)) in order to confuse the detector. This prevents
our DoS detector application from detecting an attack, even
if a DoS attack takes place (Figure 2(b) and (d)).

3.5. Data plane poisoning attack

FloodLight case. The application of this attack to Flood-
Light is presented in Figure 3. Here, a malicious applica-
tion succeeds at flushing out the flow rules from the data
plane. According to the OpenFlow protocol, when a new
network packet arrives at a data plane that does not contain
a flow rule for the arrived packet, the data plane needs to
send a flow rule request message to the network OS at the
initiation of flow creation, typically once per network flow.
However, if the malicious application flushes out all the

Table III. Average round trip time before and after the data
plane poisoning attack.

NOX FloodLight OpenDayLight

Normal 0.05 ms 0.05 ms 0.08 ms
Compromised 2.00 ms 5.00 ms 0.11 ms
Delay rate 3900% 9900% 37.5%

flow rules, the data plane is forced to send a flow request
message every time the network packet arrives at the data
plane. This would significantly delay the entire network.
As shown in Table III, the round trip time delay measured
when the malicious application was in effect was 100 times
more than without the malicious application.

In addition, the way in which the transmission of a criti-
cal flow rule impacts the performance was demonstrated by
comparing the traverse time, as shown in Table III. When
a malicious application periodically transmits a delete flow
rule to a switch, the overall performance is degraded sig-
nificantly. Since the malicious application deletes all the
flow rules, the switch would send a query to the con-
trol plane for every packet. Sending a critical flow rule
would be able to cause security holes, such as bypassing
the firewall, intrusion detection system, and other network
security devices.

NOX case. Similar to FloodLight, NOX does not have a
restriction mechanism for sending an arbitrary flow rule to
the data plane, regardless of which application sends a flow
rule intended for a developer or an adversary. The effect of
this kind of attack is clearly presented in Table III.

OpenDayLight case. Since OpenDayLight does not
check the authenticity of a flow rule sent to the data plane,
a malicious application was used to perform the data plane
poisoning attack as well. As shown in Table III, however,
the latency of the round trip time does not increase signif-
icantly compared with the cases of NOX and FloodLight
although the malicious application successfully affected
the data plane. This result shows that OpenDayLight may
be resilient to the data plane poisoning attack.

3.6. System shell execution attack

During this type of attack, a malicious application can cre-
ate a number of new processes to consume the resources
of the host computer running FloodLight. As an operation

1974 Security Comm. Networks 2016; 9:1971–1982 © 2015 John Wiley & Sons, Ltd.

DOI: 10.1002/sec



J. Noh et al. Vulnerabilities of network OS and mitigation with state-based permission system

of this nature would not be restricted by a network OS,
the application would be able to conduct various critical
operations that could alter the normal operations of Flood-
Light, NOX, or OpenDayLight. None of the network OSs
were found to provide any means for restricting the invoca-
tion of a sensitive system call (e.g., a system exit function),
and thus, all network OSs would be prone to this type
of attack.

4. DEFENDING NETWORK
OPERATING SYSTEM
FROM ATTACKS

4.1. Overview

In the previous section, we presented real-world exam-
ples of situations in which network OSs could be attacked.
Network users naturally consider a defense system that
protects a network OS from these attack trials. However, a
very limited number of studies have addressed this prob-
lem. For example, Monaco et al. [20] suggested a method
that employs generic OS features to increase the robustness
of the network OS, and Wen et al. [14] proposed a system
that prohibits an application from invoking system calls
without permission. Another study [15] attempted to create
a robust and secure network OS by completely redesigning
the architecture of the network OS. The Rosemary network
OS has various built-in protection mechanisms to protect
network applications and the network OS itself. Although
they conducted pioneering research work in this area, they
did not address all possible problems; hence, more research
work is required. One aspect to consider when adding secu-
rity features to a network OS is ease of deployability, in
other words, minimizing the need to change existing net-
work equipment. This motivated us to design a system
capable of defending a network OS against diverse attack
situations (including the attacks we are proposing in this
paper). To this end, we propose a permission-based defense
approach for the network OS. This approach is based on
Android security features, which have various permission
lists named manifest. However, it is difficult to deploy
an Android permission system on a network OS as the
Android OS is designed for mobile devices. Because of the
difference between the features of SDN applications and
those of Android applications, deploying such a permission
system on a network OS would require significant effort. It
would involve extracting the features of SDN applications
and designing a new permission system that is compatible
with the SDN applications. This has motivated us to design
a system capable of defending a network OS from diverse
attack cases (including the attacks we have proposed).
To this end, we propose a permission-based defending
approach for network OSs. This approach first generalizes
the behavior of network applications running on a network
OS to extract common behavioral features. Based on the
extracted features, our proposed system provides a way
to define allowed and disallowed behaviors for a network

application. Considering the generalized behavior of the
SDN applications, we suggest an SDN-specific permission
system capable of restricting the possible actions of each
SDN application.

4.2. Behavior of network applications

Various network applications running on multiple network
OSs� were analyzed to define their behavior. Although
legacy applications (e.g., MS Word and Notepad) could
also be considered network applications, the latter applica-
tions are likely to show some common behavioral patterns
because they follow the OpenFlow protocol and respond
according to pre-specified behavioral patterns. Our anal-
ysis revealed two important common features that distin-
guish a network application from a legacy application.
First, input locations are limited. Unlike a general appli-
cation that has almost unlimited input types and values, a
network application receives inputs from limited locations.
Second, the behavior of network applications is relatively
restricted compared with that of a legacy application. A
general application may be capable of performing actions
that are quite diverse (e.g., copy, read, write, and remove)
for a particular event, which requires the program to be
complicated. However, a network application is likely to
have a limited behavioral set for such an event, such as
creating a flow rule and requesting a core module for send-
ing the rule back to the data plane. We believe it should
be possible to use these two permission sets in defining
the behavior of a network application and thus that they
would be able to assist us to define permissions for a net-
work application. Figure 4 shows the difference between
the features of network and generic applications. It is clear
that generic applications receive various user inputs and
produce results according to these inputs. On the other
hand, a network application receives an OpenFlow request
message from the data plane in reply to which it returns
a response message and stores the process information to
internal storage.

4.3. Generalizing behavior of
network applications

The analysis presented in Section 4.2 indicated the main
role of network applications to be the processing of
requests from the data plane, a finding on which we based
our investigation of publically available SDN applications
from various network OSs such as NOX, FloodLight, and
OpenDaylight. As a result of this analysis, we defined the
term State of a network application. A specific Open-
Flow message from the data plane is defined as a State
of an SDN application.

� In our analysis, we include network applications distributed
with FloodLight, POX, NOX, and OpenDayLight.

Security Comm. Networks 2016; 9:1971–1982 © 2015 John Wiley & Sons, Ltd. 1975
DOI: 10.1002/sec



Vulnerabilities of network OS and mitigation with state-based permission system J. Noh et al.

Figure 4. Difference between network applications and generic application.

4.3.1. OpenFlow state.

In general, the life cycle of a network application is
quite simple. It waits for a request from the data plane,
receives the request from it, processes the request, and
sends the result back to the data plane.

According to Openflow specification version 1.1, there
are three different OpenFlow requests from the data plane:
Packet_in, Flow_removed, and Port_status,
each of which is processed differently by the
network application.

These three different types of requests are defined as
States. The State is used as the unit to which the per-
mission details can be applied. That is, the permission set
of an application can be changed on each different
State. For example, the role of a Layer 2 Learning
Switch application on the FloodLight network OS is to
add or remove flow entries of opposite switch when
a flow is created or removed in a switch. When a
Packet_in request has occurred, this application gen-
erates either a Packet_out or a Flowmod_add mes-
sage, which sends back to the corresponding opposite
switch. It generates and sends a Flowmod_delete
message when a Flow_removed request has occurred.
Without State information, this application will always
be allowed to send Packet_out, Flowmod_add, and
Flowmod_delete messages in any situation. On the
other hand, the application can be required to obtain
permission to send a message if it has State infor-
mation. This state-related permission set enables the
system administrator to have an increased awareness
of the activities of each application. Based on the
OpenFlow specification version 1.1 and our analysis of
SDN applications, we found that a network applica-
tion can have up to five states. The States are listed
as follows.

� Initial State. When the controller starts, applica-
tions are in the Initial State, in which applications
are initialized and configured.

� Ready State. After initialization, applications are in
the Ready State, that is, they are ready to receive
a new event. This is the basic State in which all
applications are positioned before receiving a request
from the data plane.

� PACKETIN State. When the controller receives a
Packet_in OpenFlow message and forwards the
message to a network application, the receiving appli-
cation changes its State to PACKETIN State.

� FLOWREM State. When the controller receives a
Flow_removed OpenFlow message, an application
with permission to process it will change its State
to FLOWREM State.

� PORTSTATUS State. If the controller receives a
Port_status OpenFlow message, an application
with permission to process it will change its State
to PORTSTATUS State.

4.3.2. Permission sets for SDN applications.

Current network OSs do not impose explicit restric-
tions on SDN applications. This allows buggy or malicious
applications to run arbitrary commands, which may be
harmful to the network OS, as described in Section 3.
By adding permission rules to SDN applications, the net-
work administrator is able to limit application permissions
to impede malicious activities. This permission model
enables each network application to have the least privi-
lege principle, which improves the security of the network
OS. Our model is similar to the Android permission model,
which supports a scalable permission set. In our permis-
sion policy, there are two main permission sets on SDN
applications. One is the OpenFlow message permission set,
in which each type of OpenFlow message is listed as a
permission rule. The definition of the OpenFlow States
in Section 4.3.1 enables us to create permission sets effi-
ciently. For example, it would be possible to allow a
forwarding application to only receive Packet_inOpen-
Flow messages by restricting its states to Initial, Ready, and
PACKETIN States only. The other permission set is the
network OS resource permission set. Current network OS
architecture permits SDN applications to access network
OS resources without any restriction. As demonstrated in
Section 3, malicious SDN applications can modify data
on internal storage for DoS or they could even open a
backdoor to allow an unauthorized entity to access the
network. In general, SDN applications share network OS
resources, which necessitate a tracking process to estab-
lish which entity has access to a particular shared resource
and to identify which action the entity performs on the

1976 Security Comm. Networks 2016; 9:1971–1982 © 2015 John Wiley & Sons, Ltd.

DOI: 10.1002/sec



J. Noh et al. Vulnerabilities of network OS and mitigation with state-based permission system

shared resource. Tracking requires the implementation of
authentication. Authentication, coupled with a network OS
resource permission system, would effectively defend the
system against malware or malicious attacks. We created
two network OS resource permission sets: (i) permis-
sion on accessing internal storage and (ii) permission on
system call.

4.4. Detection strategy

In the previous subsection, we described the states and
permissions that may be assigned to a network applica-
tion. The permission set of a network application consists
of an OpenFlow message and a network OS resource at
running time. These two features of the network applica-
tion can be combined and structured in a format similar
to XML. The format is illustrated in Figure 5. The Open-
Flow permission set is highly dependent on a state. That
is, the permission set can be changed for different Open-
Flow States. For example, an application that has two
OpenFlow states may have a different permission set for
each of these States. Figure 5 shows the permission
format. The two main permission sets are OpenFlow and
System resource, and these two sets are independent from
one another. OpenFlow permission is required to start from
a state tag to set the permission along with the correspond-
ing state. Some permission lists have subpermission rules,

Figure 5. Sample permission example.

Table IV. Implemented permission sets.

Type Permission name Description

OpenFlow PACKETOUT Send Packet_out
FLOWMOD_ADD Send Flowmod_add
FLOWMOD_DELETE Send Flowmod_delete
FLOWMOD_MODIFY Send Flowmod_modify
STATSREQUEST Send stats_request

System DATABASE Access internal storage
SYSTEMCALL Execute system call

such as FLOWMOD_ADD, FLOWMOD_DELETE, and
SYSCALL_EXECUTE. All the rules in the permission
sets are listed in Table IV. For the unspecified permission
lists, the administrator can choose allow all, deny all, or
allow with alert. With this permission set, we are able to see
how many permissions an application requires at certain
State. Figure 6 shows the required permission difference
between the benign and malicious forwarding applications.

5. IMPLEMENTATION AND
EVALUATION

The performance of our detection strategy was validated
by implementing a prototype of a permission-based detec-
tion system on FloodLight network OS version 0.90.
Our implementation was found to effectively detect most
threats that were identified and described in Section 3 with
little overhead. The remainder of this section describes the
implementation and evaluation of our prototype.

5.1. Implementation

A prototype of a permission-based detection system was
developed on FloodLight with the aim of protecting net-
work OSs against the threats mentioned in Table I. Flood-
Light version 0.90, running on Ubuntu Linux 13.04, was
used for this purpose. The SDN configuration was per-
formed within a Mininet environment [19]. The main
challenge in implementing the detection system was to
determine how to track all the permission sets in real time,
and this was carried out by assuming that network applica-
tion developers would use our wrapper functions in a way
similar to that of Fresco [21]. Our wrapper functions enable
the network OS to track the permission set of each appli-
cation in real time, which was accomplished by creating
a wrapper function that performs requested functionalities
on behalf of the network application. The wrapper func-
tion checks the permission through the permission set of
each application before performing the requested func-
tion. Based on the wrapper function, a prototype of the
permission-based malicious application detection system
was built. The prototype operates as follows. First, on
application loading time, the network OS parses the per-
mission file that contains the permission set of each of the
applications. Second, when an application tries to perform

Security Comm. Networks 2016; 9:1971–1982 © 2015 John Wiley & Sons, Ltd. 1977
DOI: 10.1002/sec



Vulnerabilities of network OS and mitigation with state-based permission system J. Noh et al.

Figure 6. Different permissions of benign and malicious applications.

Figure 7. Preventing malicious behavior that disguises firewall application. (a) Loading permission of malicious application. (b)
Preventing unspecified behavior.

an action, the wrapper function verifies whether the action
is allowed, based on the permission set of the application.
Finally, if an application does not have permission to per-
form the action, our system notifies the administrator of the
action of the application and ignores the requested action.

5.2. Evaluation

5.2.1. Effectiveness of attacks.

Our results showed that off-the-shelf network OSs,
such as NOX, FloodLight, and OpenDayLight, are all
highly vulnerable to the four kinds of attacks (identified in
Section 3) by malicious network applications.

5.2.2. Evaluation of the permission system.

The ability of our detection system to effectively pre-
vent the attacks described in Section 3 was demonstrated
by creating an example scenario of an attack based
on a system call execution attack. We have installed a
maliciously crafted network application that launches a
system shell command (e.g., launching/bin/bash). This
malicious application disguises itself as a firewall appli-
cation and uses the same permission set as that of a
benign firewall application. Figure 7(a) shows the per-
mission set in use when the application is being loaded.
When the malicious application attempted a System

shell execution attack, our detection system suc-
cessfully prevented the application from executing the
system call because the application does not have a
privilege to perform the call on its permission set.
Figure 7(b) shows that our permission-based detection
system prototype is capable of successfully detecting the
malicious behavior.

The overhead consumption of our detection system was
assessed by measuring the performance under two sce-
narios, namely, with and without the permission detection
system. For both scenarios, the start and end times were
recorded. Our performance tests were conducted with a
virtual machine and Mininet environment. The host test
system consisted of Intel i7-4850HQ and 16 GB of mem-
ory running on OS X 10.10 (Yosemite) and VMware
Fusion 7. The virtual machine was configured with a two-
core CPU and 2.5 GB memory running on Ubuntu Linux
14.04 64 bit.

Table V presents the results of our performance test,
which shows that the overhead is within the margin

Table V. Performance evaluation of permission enforced
FloodLight (100 runs average).

Without permission With permission Overhead

52.3�s 52.8�s 0.5 �s (0.9%)

1978 Security Comm. Networks 2016; 9:1971–1982 © 2015 John Wiley & Sons, Ltd.

DOI: 10.1002/sec



J. Noh et al. Vulnerabilities of network OS and mitigation with state-based permission system

of accuracy Java System.nanoTime(). This result
shows that our permission-based detection system gen-
erates little overhead, for the reason that the number
of permission sets used by our system is designed to
behave in a coarse-grained manner. The number of possible
permissions is equal to the number of states times the num-
ber of possible permissions of each state, which may be
considered as involving no overhead.

6. DISCUSSION

The prevention of DoS-type attacks using our permission
framework is currently beyond the scope of our work.
Although our permission framework may be extended to
include the allowed rates and frequencies of contacts, the
permission framework generally does not address the exor-
bitant usage of permitted paths or executions. A number
of outstanding problems relating to solving the problems
identified and listed in Table I still remain. These limi-
tations mainly exist because of an insufficient number of
sample network applications, which also proved problem-
atic in other respects. Our attack scenarios were defended
by producing an anomaly detection system based on
our analysis of network applications through permissions.
However, our analysis was complicated by the limited
number of available network applications that could be
used to classify benign and malicious behaviors. In the
near future, we can expect increasing activity in the mar-
ket for network OS applications, resulting in a multitude
of application samples. Once this occurs, we would be
able to expand our research on anomaly detection by using
some machine learning techniques, such as support vector
machine (SVM). Despite these limitations, the attacks we
identified and the permission system we developed relate
to real-world network OS. It is expected that we would
be able to solve the aforementioned problems during our
ongoing research efforts.

This permission system could be applied to examine
SDN applications, especially for public application stores.
For example, the administrators of the HP SDN application
store could examine a submitted SDN application by com-
paring the application description with the application per-
mission, verifying whether the application has permissions
that are not written in the description. Because over priv-
ileged applications may have potential malicious codes,
administrators could refuse to publish these applications or
ask the developers to fix the issues.

7. RELATED WORK

Several pioneering studies have been conducted to inves-
tigate security issues relating to SDN [13]. Possible
threat vectors in SDN were studied [22], possible secu-
rity problems presented by the OpenFlow protocol were
tracked [23], and other possible attack scenarios were dis-
covered [24,25]. However, our work differs from these
studies in that it is the first attempt to illustrate real-world

attack scenarios involving the subversion of a network OS.
Previous work focused on the data plane as being the most
vulnerable to external attacks. Typically, adverse behav-
ior does not physically access the control plane. While the
industry was still considering opening an SDN application
store, adversaries would have had a gateway for hacking
network OSs with a maliciously crafted network applica-
tion. However, now that an SDN application store [18] has
been launched, adversaries have a way to access the control
plane by creating maliciously crafted network applications
and distributing them on the SDN application store.

To prevent unintended results, several researchers
focused on SDN security features. FortNOX [26] prevents
rule conflicts among applications in real time. SEFlood-
Light [27] is an extension and improvement of the Fort-
NOX system implemented in FloodLight. NICE [28] is a
tool for automating OpenFlow application testing to find
bugs and evaluate the reliability of a network application.
YANC [20] adopts UNIX permission separation in modern
OSs to a network application through a file system concept.

Recently, research concerning the security of an SDN
controller [29–31] was conducted. This work suggests a
growing interest in security issues relating to network OSs.

There have been many efforts to investigate permission-
based security enhancement. Specifically, research involv-
ing the use of a permission set to provide improved
access control on Android [32] OSs is one of the secu-
rity issues currently receiving the most attention [33–36].
However, no work has yet been performed in connection
with permission set systems on network OSs. To the best
of our knowledge, this is the first work suggesting the
use of a proper permission set for each network appli-
cation based on our analysis of the network application
behavior in the context of SDN. To date, few studies
have dealt with permission-based authentication systems
for SDN [14,37]. PermOF [14] proposes the use of 18
permission sets under four distinct categories (Read, Noti-
fication, Write, and System). The former three categories
are OpenFlow-related permissions, whereas the remaining
category controls the access to the local resources provided
by a network OS, such as network access or file system
access. OperationCheckpoint [37] adopts the part of the
permission set of PermOF, which was implemented on the
FloodLight controller. However, this permission set is too
coarse grained and does not enable network application
users to distinguish malicious applications from benign
applications. In contrast to their approach, our permission
system has five states for each of the permissions, which
help application users to determine when the application
uses each OpenFlow protocol.

Our previous work [15] proposed a security-enhanced
network OS based on the micro-NOS concept that spawns
network applications independently. Following the micro-
NOS concept, the network OS, named, Rosemary Kernel,
and each network application are launched in separate pro-
cesses at different levels of security (kernel mode and
user mode, inspired by exokernel [38]). Thus, a network
application cannot invade network OS resources, such

Security Comm. Networks 2016; 9:1971–1982 © 2015 John Wiley & Sons, Ltd. 1979
DOI: 10.1002/sec



Vulnerabilities of network OS and mitigation with state-based permission system J. Noh et al.

as network topology information in its memory, with-
out proper permissions. Moreover, a network application
is monitored by the Resource Manager, which inspects
whether network applications exceed their own capabil-
ities in terms of memory, CPU, file descriptor, and net-
work usage as accounted in their permission assessment.
Although Rosemary effectively prevents DoS and internal
storage manipulation attacks, it is not designed to pre-
vent well-crafted malicious applications from poisoning
the data plane. As mentioned earlier, because of the state-
based permission system, most malicious behavior can be
filtered in the application install phase.

8. CONCLUSION
We demonstrated that network OSs currently in use are
vulnerable and can be exploited through various attack vec-
tors as shown by the exploitation examples. Most existing
network OSs that were analyzed do not include security
concepts that may prevent attacks such as DoS, internal
storage manipulation, data plane poisoning, and system
shell execution. An analysis of the behavior of network
applications enabled us to extract the unique features of
those applications to model the normal operation of each
application role. A table containing the permission set
was created for each application, and behavioral patterns
were clustered in an attempt to group user applications
according to their functionality. Moreover, we suggested
an approach for the classification of core and user applica-
tions. A prototype abnormal behavior network application
detector was implemented on FloodLight using the afore-
mentioned features we identified. Future work aims to
adapt existing state-of-the-art work, such as static analysis
and dynamic analysis.

ACKNOWLEDGEMENTS

This research was supported by the Ministry of
Science, ICT and Future Planning (MSIP), Korea, under
the BrainScouting-Program (H7106-14-1011) supervised
by the Institute for Information and Communication Pro-
motion (IITP). This work was also sponsored by the
Agency for Defense Development (ADD) under grant
no. UD140002ED. This work was also supported by the
ICT R&D program of MSIP/IITP (R-20150223-000167,
Development of High Reliable Communications and Secu-
rity SW for Various Unmanned Vehicles). This work was
also supported by grant no. K-15-L01-C04-S01 from the
Korea Institute of Science and Technology Information and
was supported by the ICT R&D program of MSIP/IITP
(2014-044-072-003, Development of Cyber Quarantine
System using SDN Techniques).

REFERENCES
1. Gude N, Koponen T, Pettit J, et al. NOX: towards

an operating system for networks. ACM SIG-
COMM Computer Communication Review 2008;
38(3): 105–110.

2. Mccauley J. POX: a Python-based OpenFlow
controller. Available from: http://www.noxrepo.org/
pox/about-pox/ [Accessed on 2 October 2015].

3. Big S. Floodlight openflow controller. Available from:
http://www.projectfloodlight.org/floodlight/ [Accessed
on 2 October 2015].

4. OpenFlowHub. BEACON. Available from: http://
www.openflowhub.org/display/Beacon [Accessed on 2
October 2015].

5. Foundation L. OpenDaylight. Available from: https://
www.opendaylight.org/ [2 October 2015].

6. Khurshid A, Zhou W, Caesar M, Godfrey P. Veriflow:
verifying network-wide invariants in real time. ACM
SIGCOMM Computer Communication Review 2012;
42(4): 467–472.

7. Braga R, Mota E, Passito A. Lightweight ddos flood-
ing attack detection using nox/openflow. 2010 IEEE
35th Conference on Local Computer Networks (LCN),
Denver, CO, USA, 2010; 408–415.

8. Jain S, Kumar A, Mandal S, et al. B4: experi-
ence with a globally-deployed software defined WAN.
Proceedings of the ACM SIGCOMM 2013 Confer-
ence on SIGCOMM. ACM, Hong Kong, China, 2013;
3–14.

9. Heiliger J. Building efficient data centers with the
open compute project, 2011. Available from: https://
www.facebook.com/notes/facebook-engineering/
building-efficient-data-centers-with-the-open-
compute-project/10150144039563920 [Accessed on 2
October 2015].

10. Dixit A, Hao F, Mukherjee S, Lakshman TV, Kom-
pella R. Towards an elastic distributed SDN controller.
Proceedings of the Second ACM SIGCOMM Workshop
on Hot Topics in Software Defined Networking. ACM,
Hong Kong, China, 2013; 7–12.

11. Koponen T, Casado M, Gude N, et al. Onix: a dis-
tributed control platform for large-scale production
networks. Proceedings of the 9th USENIX confer-
ence on Operating systems design and implementation.
Vancouver, BC, Canada, 2010; 1–6.

12. Tootoonchian A, Ganjali Y. Hyperflow: a distributed
control plane for openflow. Proceedings of the
2010 Internet Network Management Conference on
Research on Enterprise Networking. USENIX Associ-
ation, San Jose, CA, USA, 2010; 3–3.

13. Kreutz D, Ramos F, Verissimo P. Towards secure and
dependable software-defined networks. Proceedings of
the Second ACM SIGCOMM Workshop on Hot Topics
in Software Defined Networking. ACM, Hong Kong,
China, 2013; 55–60.

14. Wen X, Chen Y, Hu C, Shi C, Wang Y. Towards
a secure controller platform for openflow appli-
cations. Proceedings of the Second ACM SIG-

1980 Security Comm. Networks 2016; 9:1971–1982 © 2015 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

http://www.noxrepo.org/pox/about-pox/
http://www.noxrepo.org/pox/about-pox/
http://www.projectfloodlight.org/floodlight/
http://www.openflowhub.org/display/Beacon
http://www.openflowhub.org/display/Beacon
https://www.opendaylight.org/
https://www.opendaylight.org/


J. Noh et al. Vulnerabilities of network OS and mitigation with state-based permission system

COMM Workshop on Hot Topics in Software
Defined Networking. ACM, Hong Kong, China, 2013;
171–172.

15. Shin S, Song Y, Lee T, Lee S, Chung J, Por-
ras P, Yegneswaran V, Noh J, Kang BB. Rose-
mary: a robust, secure, and high-performance net-
work operating system. Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communica-
tions Security. ACM, Scottsdale, AZ, USA, 2014;
78–89.

16. Melvin M. Network Computing. Available from:
http://www.networkcomputing.com/networking/can-
sdn-adoption-solve-real-world-problems/a/d-id/1005
791 [Accessed on 2 October 2015].

17. McKeown N, Anderson T, Balakrishnan H, Parulkar
G, Peterson L, Rexford J, Shenker S, Turner J. Open-
flow: enabling innovation in campus networks. ACM
SIGCOMM Computer Communication Review 2008;
38(2): 69–74.

18. HP. SDN App Store. Available from: http://h17007.
www1.hp.com/us/en/networking/solutions/technology
/sdn/devcenter/index.aspx#tab=TAB1 [Accessed on
October 2 2015].

19. Mininet. Rapid prototyping for software defined
networks. Available from: http://yuba.stanford.edu/
foswiki/bin/view/OpenFlow/Mininet/ [Accessed on 2
October 2015].

20. Monaco M, Michel O, Keller E. Applying operat-
ing system principles to sdn controller design. Pro-
ceedings of the Twelfth ACM Workshop on Hot Top-
ics in Networks. ACM, College Park, MD, USA,
2013; 2.

21. Shin S, Porras P, Yegneswaran V, Fong M, Gu
G, Tyson M. Fresco: modular composable secu-
rity services for software-defined networks. Proceed-
ings of 20th Annual Network & Distributed Sys-
tem Security Symposium. San Diego, CA, USA,
2013.

22. Shin S, Gu G. Attacking software-defined networks:
a first feasibility study. Proceedings of the Second
ACM SIGCOMM Workshop on Hot Topics in Software
Defined Networking. ACM, Hong Kong, China, 2013;
165–166.

23. Klöti R. Openflow: a security analysis. 8th Work-
shop on Secure Network Protocols (NPSEC 2013),
Göttingen, Germany, 2013; 1–6.

24. Scott-Hayward S, O’Callaghan G, Sezer S. Sdn secu-
rity: a survey. 2013 IEEE SDN for Future Networks
and Services (SDN4FNS). IEEE, Trento, Italy, 2013;
1–7.

25. Shalimov A, Zuikov D, Zimarina D, Pashkov V,
Smeliansky R. Advanced study of SDN/openflow con-
trollers. Proceedings of the 9th Central & Eastern

European Software Engineering Conference in Russia.
ACM, Moscow, Russia, 2013; 1.

26. Porras P, Shin S, Yegneswaran V, Fong M, Tyson
M, Gu G. A security enforcement kernel for Open-
Flow networks. Proceedings of the first workshop on
Hot topics in Software Defined Networking. Helsinki,
Finland, 2012; 121–126.

27. OpenFlowSec.org. SEFloodlight. Available from:
http://www.openflowsec.org/Home.html [Accessed on
2 October 2015].

28. Canini M, Venzano D, Peresini P, Kostic D,
Rexford J. A NICE way to test OpenFlow applications.
Proceedings of the 9th USENIX conference on Net-
worked Systems Design and Implementation. San Jose,
CA, USA, 2012; 127–140.

29. McGillicuddy S. SDN security issues: how secure
is the SDN stack? Available from: http://searchsdn.
techtarget.com/news/2240214438/SDN-security-
issues-How-secure-is-the-SDN-stack [Accessed on 2
October 2015].

30. Weinberg N. Is SDN your next security nightmare?
Available from: http://www.networkworld.com/news/
2014/022814-rsa-sdn-security-279298.html [Accessed
on 2 October 2015].

31. Prince B. Beware SDN security risks, experts
warn. Available from: www.networkcomputing.
com/next-generation-data-center/news/networking/
beware-sdn-security-risks-experts-warn/240166081
[Accessed on 2 October 2015].

32. Android Open Source Project. What is Android? Intro-
duction to Android. Available from: http://developer.
android.com/guide/index.html [Accessed on 2 October
2015.

33. Barrera D, Kayacik HG, van Oorschot PC, Somayaji
A. A methodology for empirical analysis of
permission-based security models and its application
to android. Proceedings of the 17th ACM Conference
on Computer and Communications Security. ACM,
Chicago, IL, USA, 2010; 73–84.

34. Felt AP, Chin E, Hanna S, Song D, Wagner D.
Android permissions demystified. Proceedings of the
18th ACM Conference on Computer and Commu-
nications Security. ACM, Chicago, IL, USA, 2011;
627–638.

35. Au KWY, Zhou YF, Huang Z, Lie D. Pscout: analyz-
ing the android permission specification. Proceedings
of the 2012 ACM Conference on Computer and Com-
munications Security. ACM, Raleigh, NC, USA, 2012;
217–228.

36. Smalley S, Craig R. Security enhanced (SE) android:
bringing flexible MAC to Android. Proceedings of
20th Annual Network & Distributed System Security
Symposium, San Diego, CA, USA, 2013.

Security Comm. Networks 2016; 9:1971–1982 © 2015 John Wiley & Sons, Ltd. 1981
DOI: 10.1002/sec

http://yuba.stanford.edu/ foswiki/bin/view/OpenFlow/Mininet/
http://yuba.stanford.edu/ foswiki/bin/view/OpenFlow/Mininet/
http://www.openflowsec.org/Home.html
www.networkcomputing. com/next-generation-data-center/news/networking/ beware-sdn-security-risks-experts-warn/240166081
www.networkcomputing. com/next-generation-data-center/news/networking/ beware-sdn-security-risks-experts-warn/240166081
www.networkcomputing. com/next-generation-data-center/news/networking/ beware-sdn-security-risks-experts-warn/240166081
http://developer.android.com/guide/index.html
http://developer.android.com/guide/index.html


Vulnerabilities of network OS and mitigation with state-based permission system J. Noh et al.

37. Scott-Hayward S, Kane C, Sezer S. Operationcheck-
point: SDN application control. 2014 IEEE 22nd Inter-
national Conference on Network Protocols (ICNP).
IEEE, The Research Triangle, NC, USA, 2014;
618–623.

38. Engler DR, Kaashoek MF, O’Toole JW. Exokernel:
An Operating System Architecture for Application-
level Resource Management. Proceedings of the fif-
teenth ACM symposium on Operating systems princi-
ples. Copper Mountain, CO, USA, 1995; 251–266.

1982 Security Comm. Networks 2016; 9:1971–1982 © 2015 John Wiley & Sons, Ltd.

DOI: 10.1002/sec


	Vulnerabilities of network OS and mitigation with state-based permission system
	Introduction
	Background
	Attacking Network Operating System
	Assumption and test environment
	Attack summary
	Denial of service attack
	Internal storage manipulation attack
	Data plane poisoning attack
	System shell execution attack

	Defending Network Operating System from Attacks
	Overview
	Behavior of network applications
	Generalizing behavior of network applications
	OpenFlow state
	Permission sets for SDN applications

	Detection strategy

	Implementation and evaluation
	Implementation
	Evaluation
	Effectiveness of attacks
	Evaluation of the permission system


	Discussion
	Related Work
	Conclusion


